全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TiO2/ZnIn2S4薄膜异质结制备及室温下NO2气敏性能研究
Preparation of TiO2/ZnIn2S4 Film Heterojunction and Study of NO2 Gas Sensitive Properties at Room Temperature

DOI: 10.12677/nat.2025.152004, PP. 22-33

Keywords: 二维金属硫化物,金属氧化物,硫铟锌,氧化钛,二氧化氮气体传感器
Two-Dimensional Metal Sulfide
, Metal Oxide, Indium Zinc Sulfide, Titanium Oxide, Nitrogen Dioxide Gas Sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

二维(2D)层状金属硫化物因其超薄的纳米片结构、较大的比表面积、丰富的边缘位点以及弱范德华键而备受关注,尤其在低温下气体传感领域展现出巨大潜力。构建异质结构是提升二维硫化物半导体传感性能的有效策略之一。本文通过水热法构建了ZnIn2S4纳米墙与TiO2纳米棒的异质结构,通过优化界面处的电子转移,从而提高了气体传感性能。优化结构在室温下对NO2具有较高的响应、优异的气体选择性,证明了ZnIn2S4在应用于NO2气体传感方面的巨大潜力。
Two-dimensional (2D) layered metal sulfides have attracted much attention due to their ultra-thin nanosheet structure, large specific surface area, abundant marginal sites and weak van der Waals bonds, especially in the field of gas sensing at low temperatures. Constructing heterogeneous structures is one of the effective strategies to improve the sensing performance of 2D sulfide semiconductors. In this paper, the heterogeneous structure of ZnIn2S4 nanowall and TiO2 nanorods was constructed by hydrothermal method, and the electron transfer at the interface was optimized to improve the gas sensing performance. The optimized structure has a high response to NO2 at room temperature and excellent gas selectivity, demonstrating the great potential of ZnIn2S4 for NO2 gas sensing applications.

References

[1]  Sun, K., Zhan, G., Zhang, L., Wang, Z. and Lin, S. (2023) Highly Sensitive NO2 Gas Sensor Based on ZnO Nanoarray Modulated by Oxygen Vacancy with Ce Doping. Sensors and Actuators B: Chemical, 379, Article ID: 133294.
https://doi.org/10.1016/j.snb.2023.133294
[2]  Sik Choi, M., Young Kim, M., Mirzaei, A., Kim, H., Kim, S., Baek, S., et al. (2021) Selective, Sensitive, and Stable NO2 Gas Sensor Based on Porous ZnO Nanosheets. Applied Surface Science, 568, Article ID: 150910.
https://doi.org/10.1016/j.apsusc.2021.150910
[3]  Orellano, P., Reynoso, J., Quaranta, N., Bardach, A. and Ciapponi, A. (2020) Short-Term Exposure to Particulate Matter (PM10 and PM2.5), Nitrogen Dioxide (NO2), and Ozone (O3) and All-Cause and Cause-Specific Mortality: Systematic Review and Meta-Analysis. Environment International, 142, Article ID: 105876.
https://doi.org/10.1016/j.envint.2020.105876
[4]  Atkinson, R.W., Butland, B.K., Anderson, H.R. and Maynard, R.L. (2018) Long-term Concentrations of Nitrogen Dioxide and Mortality: A Meta-Analysis of Cohort Studie. Epidemiology, 29, 460-472.
https://doi.org/10.1097/ede.0000000000000847
[5]  Wang, J., Fan, S., Xia, Y., Yang, C. and Komarneni, S. (2020) Room-Temperature Gas Sensors Based on ZnO Nanorod/Au Hybrids: Visible-Light-Modulated Dual Selectivity to NO2 and NH3. Journal of Hazardous Materials, 381, Article ID: 120919.
https://doi.org/10.1016/j.jhazmat.2019.120919
[6]  Cao, S., Sui, N., Zhang, P., Zhou, T., Tu, J. and Zhang, T. (2022) TiO2 Nanostructures with Different Crystal Phases for Sensitive Acetone Gas Sensors. Journal of Colloid and Interface Science, 607, 357-366.
https://doi.org/10.1016/j.jcis.2021.08.215
[7]  Moon, J., Park, J., Lee, S., Zyung, T. and Kim, I. (2010) Pd-Doped TiO2 Nanofiber Networks for Gas Sensor Applications. Sensors and Actuators B: Chemical, 149, 301-305.
https://doi.org/10.1016/j.snb.2010.06.033
[8]  Staerz, A., Weimar, U. and Barsan, N. (2022) Current State of Knowledge on the Metal Oxide Based Gas Sensing Mechanism. Sensors and Actuators B: Chemical, 358, Article ID: 131531.
https://doi.org/10.1016/j.snb.2022.131531
[9]  Goel, N., Kunal, K., Kushwaha, A. and Kumar, M. (2022) Metal Oxide Semiconductors for Gas Sensing. Engineering Reports, 5, e12604.
https://doi.org/10.1002/eng2.12604
[10]  Lee, E., Yoon, Y.S. and Kim, D. (2018) Two-dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing. ACS Sensors, 3, 2045-2060.
https://doi.org/10.1021/acssensors.8b01077
[11]  Li, W., Zhang, Y., Long, X., Cao, J., Xin, X., Guan, X., et al. (2019) Gas Sensors Based on Mechanically Exfoliated MoS2 Nanosheets for Room-Temperature NO2 Detection. Sensors, 19, Article 2123.
https://doi.org/10.3390/s19092123
[12]  Wang, Y., Liu, J., Wang, M., Pei, C., Liu, B., Yuan, Y., et al. (2017) Enhancing the Sensing Properties of TiO2 Nanosheets with Exposed {001} Facets by a Hydrogenation and Sensing Mechanism. Inorganic Chemistry, 56, 1504-1510.
https://doi.org/10.1021/acs.inorgchem.6b02603
[13]  Liu, X., Yin, P., Kulinich, S.A., Zhou, Y., Mao, J., Ling, T., et al. (2016) Arrays of Ultrathin CdS Nanoflakes with High-Energy Surface for Efficient Gas Detection. ACS Applied Materials & Interfaces, 9, 602-609.
https://doi.org/10.1021/acsami.6b13601
[14]  Lee, J., Kim, H., Lee, T., Jang, W., Lee, K.H. and Soon, A. (2019) Revisiting Polytypism in Hexagonal Ternary Sulfide ZnIn2S4 for Photocatalytic Hydrogen Production within the Z-Scheme. Chemistry of Materials, 31, 9148-9155.
https://doi.org/10.1021/acs.chemmater.9b03539
[15]  Kumar, Y., Kumar, R., Raizada, P., Khan, A.A.P., Le, Q.V., Singh, P., et al. (2021) Novel Z-Scheme ZnIn2S4-Based Photocatalysts for Solar-Driven Environmental and Energy Applications: Progress and Perspectives. Journal of Materials Science & Technology, 87, 234-257.
https://doi.org/10.1016/j.jmst.2021.01.051
[16]  Zheng, X., Song, Y., Liu, Y., Yang, Y., Wu, D., Yang, Y., et al. (2023) ZnIn2S4-Based Photocatalysts for Photocatalytic Hydrogen Evolution via Water Splitting. Coordination Chemistry Reviews, 475, Article ID: 214898.
https://doi.org/10.1016/j.ccr.2022.214898
[17]  Liu, H., Xv, J., Wang, L., Qian, Y., Fu, H., Huang, M., et al. (2022) Sensitivity Enhanced and Selectivity Improved Ethanol Sensor Based on ZnIn2S4 Nanosheet-Coated In2O3 Nanosphere Core-Shell Heterostructure. Journal of Alloys and Compounds, 898, Article ID: 163000.
https://doi.org/10.1016/j.jallcom.2021.163000
[18]  Fan, Y., Wang, W., Guan, H., Liu, C., Li, X., Chen, Y., et al. (2023) Sulfur Vacancy-Rich ZnIn2S4 Microflower with {0001} Facets for Rapid Sensing of Triethylamine. Sensors and Actuators B: Chemical, 374, Article ID: 132826.
https://doi.org/10.1016/j.snb.2022.132826
[19]  Bedala, K.K., Gonugunta, P., Soleimani, M., Mádai, E., Taheri, P., Padamati, S.K., et al. (2023) Facile Synthesis of ZnIn2S4/Cu2O Hierarchical Heterostructures for Enhanced Selectivity and Sensitivity of NH3 Gas at Room Temperature. Applied Surface Science, 640, Article ID: 158315.
https://doi.org/10.1016/j.apsusc.2023.158315
[20]  Han, S., Qiao, X., Zhao, Q., Guo, J., Yu, D., Xu, J., et al. (2024) Ultrafast and Parts-Per-Billion-Level MEMS Gas Sensors by Hetero-Interface Engineering of 2D/2D Cu-TCPP@ZnIn2S4 with Enriched Surface Sulfur Vacancies. Nano Letters, 24, 7389-7396.
https://doi.org/10.1021/acs.nanolett.4c01555
[21]  Wei, W., Zhang, H., Tao, T., Xia, X., Bao, Y., Lourenço, M., et al. (2023) A CuO/TiO2 Heterojunction Based Co Sensor with High Response and Selectivity. Energy & Environmental Materials, 6, e12570.
https://doi.org/10.1002/eem2.12570
[22]  Zhang, H., Wei, W., Tao, T., Li, X., Xia, X., Bao, Y., et al. (2023) Hierarchical NiO/TiO2 Heterojuntion-Based Conductometric Hydrogen Sensor with Anti-Co-Interference. Sensors and Actuators B: Chemical, 380, Article ID; 133321.
https://doi.org/10.1016/j.snb.2023.133321
[23]  Liu, Q., Lu, H., Shi, Z., Wu, F., Guo, J., Deng, K., et al. (2014) 2D ZnIn2S4 Nanosheet/1D TiO2 Nanorod Heterostructure Arrays for Improved Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 6, 17200-17207.
https://doi.org/10.1021/am505015j
[24]  Mahadik, M.A., Shinde, P.S., Cho, M. and Jang, J.S. (2016) Metal Oxide Top Layer as an Interfacial Promoter on a ZnIn2S4/TiO2 Heterostructure Photoanode for Enhanced Photoelectrochemical Performance. Applied Catalysis B: Environmental, 184, 337-346.
https://doi.org/10.1016/j.apcatb.2015.12.001
[25]  Xu, W., Gao, W., Meng, L., Tian, W. and Li, L. (2021) Incorporation of Sulfate Anions and Sulfur Vacancies in ZnIn2S4 Photoanode for Enhanced Photoelectrochemical Water Splitting. Advanced Energy Materials, 11, Article ID: 2101181.
https://doi.org/10.1002/aenm.202101181
[26]  Wang, X., Wang, X., Huang, J., Li, S., Meng, A. and Li, Z. (2021) Interfacial Chemical Bond and Internal Electric Field Modulated Z-Scheme Sv-ZnIn2S4/MoSe2 Photocatalyst for Efficient Hydrogen Evolution. Nature Communications, 12, Article No. 4112.
https://doi.org/10.1038/s41467-021-24511-z
[27]  Wang, J., Zhang, Y., Liu, G., Zhang, T., Zhang, C., Zhang, Y., et al. (2023) Improvements in the Magnesium Ion Transport Properties of Graphene/CNT‐Wrapped TiO2‐B Nanoflowers by Nickel Doping. Small, 20, Article ID: 2304969.
https://doi.org/10.1002/smll.202304969
[28]  Zhang, N., Li, X., Guo, Y., Guo, Y., Dai, Q., Wang, L., et al. (2023) Crystal Engineering of TiO2 for Enhanced Catalytic Oxidation of 1, 2-Dichloroethane on a Pt/TiO2 Catalyst. Environmental Science & Technology, 57, 7086-7096.
https://doi.org/10.1021/acs.est.3c00165
[29]  Li, J., Wu, C., Li, J., Dong, B., Zhao, L. and Wang, S. (2022) 1D/2D TiO2/ZnIn2S4 S-Scheme Heterojunction Photocatalyst for Efficient Hydrogen Evolution. Chinese Journal of Catalysis, 43, 339-349.
https://doi.org/10.1016/s1872-2067(21)63875-5
[30]  Wang, L., Cheng, B., Zhang, L. and Yu, J. (2021) In Situ Irradiated XPS Investigation on S‐Scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction. Small, 17, Article ID: 2103447.
https://doi.org/10.1002/smll.202103447
[31]  Zhang, P., Li, Y., Zhang, Y., Hou, R., Zhang, X., Xue, C., et al. (2020) Photogenerated Electron Transfer Process in Heterojunctions: In Situ Irradiation XPS. Small Methods, 4, Article ID: 2000214.
https://doi.org/10.1002/smtd.202000214
[32]  Liu, S., Zhou, X., Yang, C., Wei, C. and Hu, Y. (2023) Cu Atoms on Uio-66-NH2/ZnIn2S4 Nanosheets Enhance Photocatalytic Performance for Recovering Hydrogen Energy from Organic Wastewater Treatment. Applied Catalysis B: Environmental, 330, Article ID: 122572.
https://doi.org/10.1016/j.apcatb.2023.122572
[33]  Hu, Q., Yin, S., Chen, Y., Wang, B., Li, M., Ding, Y., et al. (2020) Construction of MIL-125(Ti)/ZnIn2S4 Composites with Accelerated Interfacial Charge Transfer for Boosting Visible Light Photoreactivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, Article ID: 124078.
https://doi.org/10.1016/j.colsurfa.2019.124078
[34]  Liu, S., Jiang, X., Waterhouse, G.I.N., Zhang, Z. and Yu, L. (2022) A Novel Z-Scheme NH2-MIL-125(Ti)/Ti3C2 QDs/ZnIn2S4 Photocatalyst with Fast Interfacial Electron Transfer Properties for Visible Light-Driven Antibiotic Degradation and Hydrogen Evolution. Separation and Purification Technology, 294, Article ID: 121094.
https://doi.org/10.1016/j.seppur.2022.121094
[35]  Tan, M., Ma, Y., Yu, C., Luan, Q., Li, J., Liu, C., et al. (2021) Boosting Photocatalytic Hydrogen Production via Interfacial Engineering on 2D Ultrathin Z‐scheme Znin2S4/G‐C3N4 Heterojunction. Advanced Functional Materials, 32, Article ID: 2111740.
https://doi.org/10.1002/adfm.202111740
[36]  Li, X., He, H., Tan, T., Zou, Z., Tian, Z., Zhou, W., et al. (2023) Annealing Effect on the Methane Sensing Performance of Pt-SnO2/ZnO Double Layer Sensor. Applied Surface Science, 640, Article ID: 158428.
https://doi.org/10.1016/j.apsusc.2023.158428
[37]  Wang, S., Hu, H., Tan, T., Li, X., Zhou, W., Tian, Z., et al. (2025) Enhancing NO2 Sensing Performance through Interface Engineering in Cs2AgBiBr6/SnO2/ZnO-NRs Sensor. Sensors and Actuators B: Chemical, 422, Article ID: 136654.
https://doi.org/10.1016/j.snb.2024.136654
[38]  Tan, T., Hang, Z., Li, X., Wang, S., Homewood, K., Xia, X., et al. (2024) Ultra-High-Response Heat Free H2 Sensor Based on a WO3/Pt-ZnO Thin Film. Journal of Alloys and Compounds, 979, Article ID: 173527.
https://doi.org/10.1016/j.jallcom.2024.173527
[39]  Li, X., Hu, H., Tan, T., Sun, M., Bao, Y., Huang, Z., et al. (2024) Enhancing Methane Gas Sensing through Defect Engineering in Ag-Ru Co-Doped ZnO Nanorods. ACS Applied Materials & Interfaces, 16, 26395-26405.
https://doi.org/10.1021/acsami.4c03252

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133