全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于双线性方法求两分量Coupled-Higgs方程的呼吸子解
Breather Solutions for the Two-Component Coupled-Higgs Equations Based on the Bilinear Method

DOI: 10.12677/pm.2025.155152, PP. 50-57

Keywords: 孤子解,呼吸II型解,Hirota方法,Coupled-Higgs方程
Soliton Solutions
, Breather-II Solutions, Hirota Method, Coupled-Higgs Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

呼吸子解作为一种重要的局域波解,在非线性波动力学中扮演重要的角色。本文利用Hirota双线性方法,构造出Coupled-Higgs方程的双线性形式,然后结合特殊的幂级数展开,求出Coupled-Higgs方程的呼吸II型解,为了进一步验证和展示理论结果,利用Mathematica对呼吸波进行了可视化。
Breather solutions, as an important type of localized wave solution, play a significant role in nonlinear wave dynamics. In this paper, the Hirota bilinear method is employed to construct the bilinear form of the Coupled-Higgs equation. Then, by combining a special power series expansion, the Breather Type II solutions of the Coupled-Higgs equation are derived. To further validate and illustrate the theoretical results, the breather waves are visualized using Mathematica.

References

[1]  Bludov, Y.V., Konotop, V.V. and Akhmediev, N. (2009) Matter Rogue Waves. Physical Review A, 80, Article 033610.
https://doi.org/10.1103/physreva.80.033610
[2]  Horikis, T.P. and Ablowitz, M.J. (2017) Rogue Waves in Nonlocal Media. Physical Review E, 95, Article 042211.
https://doi.org/10.1103/physreve.95.042211
[3]  Ganshin, A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-Deglin, L.P. and McClintock, P.V.E. (2008) Observation of an Inverse Energy Cascade in Developed Acoustic Turbulence in Superfluid Helium. Physical Review Letters, 101, Article 065303.
https://doi.org/10.1103/physrevlett.101.065303
[4]  Bailung, H., Sharma, S.K. and Nakamura, Y. (2011) Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions. Physical Review Letters, 107, Article 255005.
https://doi.org/10.1103/physrevlett.107.255005
[5]  Solli, D.R., Ropers, C., Koonath, P. and Jalali, B. (2007) Optical Rogue Waves. Nature, 450, 1054-1057.
https://doi.org/10.1038/nature06402
[6]  Zhang, H. and Chen, F. (2019) Dark and Antidark Solitons for the Defocusing Coupled Sasa-Satsuma System by the Darboux Transformation. Applied Mathematics Letters, 88, 237-242.
https://doi.org/10.1016/j.aml.2018.09.002
[7]  Hirota, R. (2004) The Direct Method in Soliton Theory. Cambridge University Press.
[8]  Hu, X., Li, C., Nimmo, J.J.C. and Yu, G. (2004) An Integrable Symmetric (2+1)-Dimensional Lotka-Volterra Equation and a Family of Its Solutions. Journal of Physics A: Mathematical and General, 38, 195-204.
https://doi.org/10.1088/0305-4470/38/1/014
[9]  Weng, W. and Yan, Z. (2021) Inverse Scattering and N-Triple-Pole Soliton and Breather Solutions of the Focusing Nonlinear Schrödinger Hierarchy with Nonzero Boundary Conditions. Physics Letters A, 407, Article 127472.
https://doi.org/10.1016/j.physleta.2021.127472
[10]  Anderson, D. (1998) Complex Variables, Introduction and Applications, by Mark J. Ablowitz and Athanassios S. Fokas. Optics & Photonics News, 9, 46-47.
[11]  Tajiri, M. (1983) On N-Soliton Solutions of Coupled Higgs Field Equation. Journal of the Physical Society of Japan, 52, 2277-2280.
https://doi.org/10.1143/jpsj.52.2277
[12]  Tsegel’nik, V.V. (2000) Self-similar Solutions of a System of Two Nonlinear Partial Differential Equations. Differential Equations, 36, 480-482.
https://doi.org/10.1007/bf02754472
[13]  Tang, W. (2023) Soliton Dynamics to the Higgs Equation and Its Multi-Component Generalization. Wave Motion, 120, Article 103144.
https://doi.org/10.1016/j.wavemoti.2023.103144
[14]  Ling, L., Zhao, L.-C. and Guo, B. (2014) Darboux Transformation and Classification of Solution for Mixed Coupled Nonlinear Schrödinger Equations. Communications in Nonlinear Science & Numerical Simulation, 32, 285-304.
https://doi.org/10.1016/j.cnsns.2015.08.023
[15]  Zha, Q.L. (2020) Dynamics of Localized Wave Solutions for the Coupled Higgs Field Equation. Nonlinear Dynamics, 101, 1181-1198.
https://doi.org/10.1007/s11071-020-05860-8
[16]  Hirota, R. (1971) Exact Solution of the Korteweg—De Vries Equation for Multiple Collisions of Solitons. Physical Review Letters, 27, 1192-1194.
https://doi.org/10.1103/physrevlett.27.1192
[17]  陈登远. 孤子引论[M]. 上海: 科学出版社, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133