|
城镇化模式与农业绿色全要素生产率:基于空间门限面板模型
|
Abstract:
“双碳”目标背景下,厘清不同城镇化模式与农业绿色全要素生产率之间的协同关系,对实现农业降污增效具有重要意义。本文基于卫星监测夜间灯光数据构建的复合灯光指数衡量城镇化水平,采用Super-SBM方向函数测算的GML指数评估2000~2022年间中国31个省份的农业绿色全要素生产率,并利用空间门限面板模型实证检验了城镇化水平对农业绿色全要素生产率的非线性门限关系、不同城镇化模式的差异性影响以及农业绿色全要素生产率的路径依赖性。研究结果表明,随着农业产业集聚水平的提高:(1) 城镇化水平与农业绿色全要素生产率之间呈现“先降–后升–再降”的非线性关系。(2) 城镇化深度模式对农业绿色全要素生产率的影响具有三区制门限特征,表现为“先降–后升–再降”的波动趋势,城镇化广度模式则呈现“先降–后升”的双区制门限效应。(3) 在城镇化综合水平、城镇化深度模式与农业绿色技术进步之间,均存在“先降–后升–再降”的非线性关系;在产业较高集聚水平下,二者对农业技术效率的影响由负向正转变;相比之下,城镇化广度模式对两条技术路径的依赖性较低。本文基于上述研究结果所提出的政策建议,对推动农业绿色循环发展和实现“双碳”目标具有重要的参考价值。
In the context of the “dual carbon” goals, clarifying the synergistic relationship between different urbanization models and agricultural green total factor productivity (GTFP) is crucial for achieving agricultural pollution reduction and efficiency improvement. This study constructs an urbanization index based on satellite-monitored nighttime light data and evaluates the GTFP of 31 provinces in China from 2000 to 2022 using the Super-SBM directional function. A spatial threshold panel model is employed to empirically test the nonlinear threshold relationship between urbanization levels and GTFP, the differential effects of different urbanization models, and the path dependence of GTFP. The results show that as the level of agricultural industrial agglomeration increases: (1) There is a nonlinear relationship between urbanization levels and GTFP that follows a pattern of “decline-rise-decline”. (2) The deep urbanization model has a three-threshold characteristic on GTFP, showing a fluctuating trend of “decline-rise-decline”, while the extensive urbanization model exhibits a two-threshold effect with “decline-rise”. (3) A nonlinear relationship of “decline-rise-decline” exists between the comprehensive urbanization level, the deep urbanization model, and agricultural green technological progress; under high industrial agglomeration levels, the effect of both shifts from negative to positive on agricultural technical efficiency. In contrast, the extensive urbanization model shows lower dependency on both technical paths. The policy recommendations derived from these findings have significant reference value for promoting agricultural green circular development and achieving the “dual carbon” goals.
[1] | Wu, J. and Bai, Z. (2022) Spatial and Temporal Changes of the Ecological Footprint of China’s Resource-Based Cities in the Process of Urbanization. Resources Policy, 75, Article ID: 102491. https://doi.org/10.1016/j.resourpol.2021.102491 |
[2] | Cheng, Z., Li, X. and Zhang, Q. (2023) Can New-Type Urbanization Promote the Green Intensive Use of Land? Journal of Environmental Management, 342, Article ID: 118150. https://doi.org/10.1016/j.jenvman.2023.118150 |
[3] | Liu, Y. and Zhou, Y. (2021) Reflections on China’s Food Security and Land Use Policy under Rapid Urbanization. Land Use Policy, 109, Article ID: 105699. https://doi.org/10.1016/j.landusepol.2021.105699 |
[4] | Lu, W. and Chen, W. (2024) Influence of New Urbanization on Grain Green Total Factor Productivity: The Mediating and Regulating Effects. Chinese Journal of Eco-Agriculture, 32, 529-545. |
[5] | Aubry, C., Ramamonjisoa, J., Dabat, M., Rakotoarisoa, J., Rakotondraibe, J. and Rabeharisoa, L. (2012) Urban Agriculture and Land Use in Cities: An Approach with the Multi-Functionality and Sustainability Concepts in the Case of Antananarivo (Madagascar). Land Use Policy, 29, 429-439. https://doi.org/10.1016/j.landusepol.2011.08.009 |
[6] | 方芳, 赵军, 黄宏运, 等. 城镇化推进模式与我国农业低碳全要素生产率——来自双源夜间灯光证据[J]. 统计研究, 2024, 41(4): 111-125. |
[7] | Guo, H., Xu, S. and Pan, C. (2020) Measurement of the Spatial Complexity and Its Influencing Factors of Agricultural Green Development in China. Sustainability, 12, Article 9259. https://doi.org/10.3390/su12219259 |
[8] | 银西阳, 贾小娟, 李冬梅. 农业产业集聚对农业绿色全要素生产率的影响——基于空间溢出效应视角[J]. 中国农业资源与区划, 2022, 43(10): 110-119. |
[9] | Li, E., Coates, K., Li, X., Ye, X. and Leipnik, M. (2017) Analyzing Agricultural Agglomeration in China. Sustainability, 9, Article 313. https://doi.org/10.3390/su9020313 |
[10] | Kanter, D.R., Musumba, M., Wood, S.L.R., Palm, C., Antle, J., Balvanera, P., et al. (2018) Evaluating Agricultural Trade-Offs in the Age of Sustainable Development. Agricultural Systems, 163, 73-88. https://doi.org/10.1016/j.agsy.2016.09.010 |
[11] | Shen, Z., Wang, S., Boussemart, J. and Hao, Y. (2022) Digital Transition and Green Growth in Chinese Agriculture. Technological Forecasting and Social Change, 181, Article ID: 121742. https://doi.org/10.1016/j.techfore.2022.121742 |
[12] | Lin, B. and Chen, Z. (2018) Does Factor Market Distortion Inhibit the Green Total Factor Productivity in China? Journal of Cleaner Production, 197, 25-33. https://doi.org/10.1016/j.jclepro.2018.06.094 |
[13] | Zahoor, Z., Latif, M.I., Khan, I. and Hou, F. (2022) Abundance of Natural Resources and Environmental Sustainability: The Roles of Manufacturing Value-Added, Urbanization, and Permanent Cropland. Environmental Science and Pollution Research, 29, 82365-82378. https://doi.org/10.1007/s11356-022-21545-8 |
[14] | Li, F., Chen, J., Chen, H. and Zhuo, Z. (2022) How to Reduce PM2.5? Perspective from a Spatial Autoregressive Threshold Panel Model. Ecological Indicators, 143, Article ID: 109353. https://doi.org/10.1016/j.ecolind.2022.109353 |
[15] | Chen, M., Chen, J. and Du, P. (2006) An Inventory Analysis of Rural Pollution Loads in China. Water Science and Technology, 54, 65-74. https://doi.org/10.2166/wst.2006.831 |
[16] | Chen, Y., Miao, J. and Zhu, Z. (2021) Measuring Green Total Factor Productivity of China’s Agricultural Sector: A Three-Stage SBM-DEA Model with Non-Point Source Pollution and CO2 Emissions. Journal of Cleaner Production, 318, Article ID: 128543. https://doi.org/10.1016/j.jclepro.2021.128543 |
[17] | 丁宝根, 赵玉, 邓俊红. 中国种植业碳排放的测度、脱钩特征及驱动因素研究[J]. 中国农业资源与区划, 2022, 43(5): 1-11. |
[18] | 陈晋, 卓莉, 史培军, 等. 基于DMSP/OLS数据的中国城市化过程研究——反映区域城市化水平的灯光指数的构建[J]. 遥感学报, 2003, 7(3): 168-175, 241. |
[19] | 韩海彬, 杨冬燕. 农业产业集聚对农业绿色全要素生产率增长的空间溢出效应研究[J]. 干旱区资源与环境, 2023, 37(6): 29-37. |