|
Material Sciences 2025
富氮共价有机框架衍生的氮掺杂多孔碳用于对乙酰氨基酚的高灵敏电化学传感研究
|
Abstract:
共价有机框架(Covalent Organic Frameworks, COFs)具有高比表面积、结构可设计以及易功能化修饰等特性。以COFs为前驱体,通过直接煅烧制备的碳材料不仅具有高导电性,还能保留多孔结构和杂原子掺杂特性,显著提升材料的比表面积和催化活性。将COFs衍生碳材料用于构建电化学传感器,能够增强其对待测物的吸附和传质作用,提高传感性能。在本项研究中,以含有丰富氮元素的COFTpPa为前驱体,成功制备了具有多孔结构的氮掺杂碳材料(NPC)。并采用循环伏安法(CV)、交流阻抗法(EIS)、差分脉冲伏安法(DPV)等一系列电化学检测技术,对使用NPC材料构建的对乙酰氨基酚(Acetaminophen, AP)传感器的性能进行了评估。NPC/GCE电极在进行电化学检测时对AP表现出良好的响应效果,经过一系列测试证明了其所构建的传感器具有优异的重复性、重现性、抗干扰等能力。
Covalent Organic Frameworks (COFs) exhibit remarkable properties, including a high specific surface area, a designable structure, and ease of functional modification. When COFs are employed as precursors for direct calcination, the resulting carbon materials not only possess high electrical conductivity but also retain their porous structure and heteroatom-doping features. This significantly enhances the specific surface area and catalytic activity of the materials. The utilization of COF-derived carbon materials in the fabrication of electrochemical sensors can facilitate the adsorption and mass transfer of analytes, thereby improving the sensing performance. In this study, nitrogen-doped carbon materials (NPC) with porous structure were successfully prepared using nitrogen-rich COFTpPa as a precursor. A range of electrochemical detection techniques, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV), were employed to evaluate the performance of the acetaminophen (AP) sensor fabricated with NPC materials. During electrochemical detection, the NPC/GCE electrode demonstrated a favorable response to AP. A series of tests confirmed that the sensor exhibits excellent repeatability, reproducibility, and anti-interference capabilities.
[1] | Gao, Y., Chu, T., Zhou, C., Huang, W. and Zheng, Y. (2024) Fe, Cu Co-Doped Carbon Nanosheets for Electrochemical-Colorimetric Detection of Acetaminophen. ACS Applied Nano Materials, 7, 14321-14330. https://doi.org/10.1021/acsanm.4c01798 |
[2] | Perveen, S., Baig, J.A., Nur-e-Alam, M., Kazi, M., Memon, S., Kazi, T.G., et al. (2025) Electrocatalytic Detection of Acetaminophen by Sodium Ferrite. Results in Physics, 68, Article ID: 108073. https://doi.org/10.1016/j.rinp.2024.108073 |
[3] | Pandey, R.R., Alshahrani, H.S., Krylyuk, S., Williams, E.H., Davydov, A.V. and Chusuei, C.C. (2018) Electrochemical Detection of Acetaminophen with Silicon Nanowires. Electroanalysis, 30, 886-891. https://doi.org/10.1002/elan.201700806 |
[4] | Wei, M., Yuan, Y., Chen, D., Pan, L., Tong, W. and Lu, W. (2024) A Systematic Review on Electrochemical Sensors for the Detection of Acetaminophen. Analytical Methods, 16, 6134-6155. https://doi.org/10.1039/d4ay01307g |
[5] | Qiao, Y., Liu, Q., Lu, S., Chen, G., Gao, S., Lu, W., et al. (2020) High-Performance Non-Enzymatic Glucose Detection: Using a Conductive Ni-Mof as an Electrocatalyst. Journal of Materials Chemistry B, 8, 5411-5415. https://doi.org/10.1039/d0tb00131g |
[6] | Cernat, A., Tertiş, M., Săndulescu, R., Bedioui, F., Cristea, A. and Cristea, C. (2015) Electrochemical Sensors Based on Carbon Nanomaterials for Acetaminophen Detection: A Review. Analytica Chimica Acta, 886, 16-28. https://doi.org/10.1016/j.aca.2015.05.044 |
[7] | Barnes, T.M., van de Lagemaat, J., Levi, D., Rumbles, G., Coutts, T.J., Weeks, C.L., et al. (2007) Optical Characterization of Highly Conductive Single-Wall Carbon-Nanotube Transparent Electrodes. Physical Review B, 75, Article ID: 235410. https://doi.org/10.1103/physrevb.75.235410 |
[8] | Sajjad, M. and Lu, W. (2021) Covalent Organic Frameworks Based Nanomaterials: Design, Synthesis, and Current Status for Supercapacitor Applications: A Review. Journal of Energy Storage, 39, Article ID: 102618. https://doi.org/10.1016/j.est.2021.102618 |
[9] | Kong, L., Liu, M., Huang, H., Xu, Y. and Bu, X. (2021) Metal/Covalent‐Organic Framework Based Cathodes for Metal‐ion Batteries. Advanced Energy Materials, 12, Article ID: 2100172. https://doi.org/10.1002/aenm.202100172 |
[10] | Cao, Y., Peng, W., Li, Y., Zhang, F., Zhu, Y. and Fan, X. (2023) Atomically Dispersed Metal Sites in Cof-Based Nanomaterials for Electrochemical Energy Conversion. Green Energy & Environment, 8, 360-382. https://doi.org/10.1016/j.gee.2021.11.005 |
[11] | Lv, Z., Zhang, J., Zhang, Y., Li, K., Ye, X., Fang, M., et al. (2022) Selective and Efficient Removal of Radioactive Ions from Water with Well-Dispersed Metal Oxide Nanoparticles@n-Doped Carbon. Separation and Purification Technology, 285, Article ID: 120366. https://doi.org/10.1016/j.seppur.2021.120366 |
[12] | Li, Y., Xu, X., Hou, S., Ma, J., Lu, T., Wang, J., et al. (2018) Facile Dual Doping Strategy via Carbonization of Covalent Organic Frameworks to Prepare Hierarchically Porous Carbon Spheres for Membrane Capacitive Deionization. Chemical Communications, 54, 14009-14012. https://doi.org/10.1039/c8cc06855k |
[13] | Liu, H., Hu, L., Cai, W., Feng, X., Zhang, F., Shao, R., et al. (2022) Ultrafine Pt Nanoparticles Supported on Ultrathin Nanobowl‐Shaped N‐Doped Carbon for the Oxygen Reduction Reaction. ChemElectroChem, 9, e202200123. https://doi.org/10.1002/celc.202200123 |
[14] | Li, Y., Ding, Z., Zhang, X., Li, J., Liu, X., Lu, T., et al. (2019) Novel Hybrid Capacitive Deionization Constructed by a Redox-Active Covalent Organic Framework and Its Derived Porous Carbon for Highly Efficient Desalination. Journal of Materials Chemistry A, 7, 25305-25313. https://doi.org/10.1039/c9ta07344b |
[15] | Ahmed, I., Lee, H.J. and Jhung, S.H. (2024) Porous Carbon Derived from Covalent Organic Frameworks and Relevant Porous Polymers: Preparation and Application in Adsorption and Catalysis. Chemical Engineering Journal, 499, Article ID: 156148. https://doi.org/10.1016/j.cej.2024.156148 |
[16] | Li, Y., Wang, J., Xu, S., Li, M. and Chen, F. (2024) The Preparation of 2D TpPa-COF/2D g-C3N4 Heterojunction via In-Situ Growth for Enhanced Visible-Light Photocatalysis. International Journal of Hydrogen Energy, 60, 1433-1441. https://doi.org/10.1016/j.ijhydene.2024.02.118 |
[17] | Huang, L., Mao, N., Yan, Q., Zhang, D. and Shuai, Q. (2019) Magnetic Covalent Organic Frameworks for the Removal of Diclofenac Sodium from Water. ACS Applied Nano Materials, 3, 319-326. https://doi.org/10.1021/acsanm.9b01969 |
[18] | Jin, P., Ren, G., Gao, N., Qing, C., Zeng, H., Wang, X., et al. (2024) Electrochemiluminescence Reveals the Structure‐catalytic Activity Relationship of Heteroatom‐Doped Carbon‐Based Materials. Small Methods, 9, Article ID: 2401496. https://doi.org/10.1002/smtd.202401496 |
[19] | Vomo, L.A., Deffo, G., Fotsop, C.G., Djemmoe, L.G., Tchieda, V.K., Eya’ane, F.M., et al. (2024) Synthesis of Zinc Oxide Nanoparticles Based on Coffee Husks Embedded on Mesoporous Silica for the Sensing of Acetaminophen. ChemElectroChem, 11, e202400088. https://doi.org/10.1002/celc.202400088 |
[20] | Liu, X., Guo, J., Wang, Y., Wang, A., Yu, X. and Ding, L. (2023) A Flexible Electrochemical Sensor for Paracetamol Based on Porous Honeycomb-Like NiCo-MOF Nanosheets. Rare Metals, 42, 3311-3317. https://doi.org/10.1007/s12598-023-02349-2 |
[21] | Pierpaoli, M., Jakóbczyk, P., Dec, B., Giosuè, C., Czerwińska, N., Lewkowicz, A., et al. (2022) A Novel Hierarchically-Porous Diamondized Polyacrylonitrile Sponge-Like Electrodes for Acetaminophen Electrochemical Detection. Electrochimica Acta, 430, Article ID: 141083. https://doi.org/10.1016/j.electacta.2022.141083 |
[22] | Dong, P., Li, N., Zhao, H., Cui, M., Zhang, C., Han, H., et al. (2019) POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol a and Acetaminophen. Chemical Research in Chinese Universities, 35, 592-597. https://doi.org/10.1007/s40242-019-8370-8 |