|
Pure Mathematics 2025
GCGAN:基于生成对抗网络的时间序列Granger因果关系发现
|
Abstract:
Granger因果关系在时间序列建模中具有重要意义,但传统方法存在难以捕捉复杂非线性关系等诸多局限性。本文在相关工作的基础上提出GCGAN模型,首次将生成对抗网络应用于时间序列中的Granger因果关系发现。通过设计多头生成器的架构建模目标序列,在训练时对生成器施加稀疏诱导惩罚项,并在提取因果关系矩阵时引入阈值方法,GCGAN能够精准找寻高维时间序列中的复杂Granger因果关系。本研究为时间序列Granger因果关系发现提供了新的深度学习范式。
Granger causality plays a significant role in time series modeling. However, traditional methods struggle with capturing complex nonlinear relationships among others limitations. Building on previous studies, this paper introduces the GCGAN model, marking the first application of Generative Adversarial Networks (GANs) to Granger causality discovery in time series. By designing a multi-head generator architecture to model target sequences, imposing sparse inducing penalties on the generator during training, and introducing a threshold method when extracting the causality matrix, GCGAN can accurately identify complex Granger causalities in high-dimensional time series. This study provides a novel deep learning paradigm for the discovery of Granger causality in time series.
[1] | Granger, C.W.J. (1969) Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica, 37, 424-438. https://doi.org/10.2307/1912791 |
[2] | Shahbaz, M., Lean, H.H. and Shabbir, M.S. (2012) Environmental Kuznets Curve Hypothesis in Pakistan: Cointegration and Granger Causality. Renewable and Sustainable Energy Reviews, 16, 2947-2953. https://doi.org/10.1016/j.rser.2012.02.015 |
[3] | Sharpe, W.F., Alexander, G.J. and Bailey, J. (1995) Investments Prentice Hall. Prentice Hall. |
[4] | Sheikhattar, A., Miran, S., Liu, J., Fritz, J.B., Shamma, S.A., Kanold, P.O., et al. (2018) Extracting Neuronal Functional Network Dynamics via Adaptive Granger Causality Analysis. Proceedings of the National Academy of Sciences, 115, E3869-E3878. https://doi.org/10.1073/pnas.1718154115 |
[5] | Sims, C.A. (1980) Macroeconomics and Reality. Econometrica, 48, 1-48. https://doi.org/10.2307/1912017 |
[6] | Stokes, P.A. and Purdon, P.L. (2017) A Study of Problems Encountered in Granger Causality Analysis from a Neuroscience Perspective. Proceedings of the National Academy of Sciences, 114, E7063-E7072. https://doi.org/10.1073/pnas.1704663114 |
[7] | Hiemstra, C. and Jones, J.D. (1994) Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation. The Journal of Finance, 49, 1639-1664. https://doi.org/10.1111/j.1540-6261.1994.tb04776.x |
[8] | Lutkepohl, H. (2005) New Introduction to Multiple Time Series Analysis. Springer Science & Business Media. |
[9] | Fan, J. and Li, R. (2001) Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273 |
[10] | Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x |
[11] | Hinton, G.E. and Salakhutdinov, R.R. (2006) Reducing the Dimensionality of Data with Neural Networks. Science, 313, 504-507. https://doi.org/10.1126/science.1127647 |
[12] | Graves, A. (2012) Supervised Sequence Labelling. In: Studies in Computational Intelligence, Springer, 5-13. https://doi.org/10.1007/978-3-642-24797-2_2 |
[13] | Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2018) Multistep Neural Networks for Data-Driven Discovery of Nonlinear Dynamical Systems. |
[14] | Nauta, M., Bucur, D. and Seifert, C. (2019) Causal Discovery with Attention-Based Convolutional Neural Networks. Machine Learning and Knowledge Extraction, 1, 312-340. https://doi.org/10.3390/make1010019 |
[15] | Tank, A., Covert, I., Foti, N., Shojaie, A. and Fox, E.B. (2021) Neural Granger Causality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 4267-4269. https://doi.org/10.1109/tpami.2021.3065601 |
[16] | Li, H., Yu, S. and Principe, J. (2023) Causal Recurrent Variational Autoencoder for Medical Time Series Generation. Proceedings of the AAAI Conference on Artificial Intelligence, 37, 8562-8570. https://doi.org/10.1609/aaai.v37i7.26031 |
[17] | Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. (2014) Generative Adversarial Nets. Advances in Neural Information Processing Systems, 27, 2672-2680. |
[18] | Geiger, A., Liu, D., Alnegheimish, S., Cuesta-Infante, A. and Veeramachaneni, K. (2020) Tadgan: Time Series Anomaly Detection Using Generative Adversarial Networks. 2020 IEEE International Conference on Big Data (Big Data), Atlanta, 10-13 December 2020, 33-43. https://doi.org/10.1109/bigdata50022.2020.9378139 |
[19] | Iglesias, G., Talavera, E., González-Prieto, Á., Mozo, A. and Gómez-Canaval, S. (2023) Data Augmentation Techniques in Time Series Domain: A Survey and Taxonomy. Neural Computing and Applications, 35, 10123-10145. https://doi.org/10.1007/s00521-023-08459-3 |
[20] | Koochali, A., Dengel, A. and Ahmed, S. (2021) If You Like It, GAN It—Probabilistic Multivariate Times Series Forecast with Gan. The 7th International Conference on Time Series and Forecasting, 5, Article 40. https://doi.org/10.3390/engproc2021005040 |
[21] | Luo, Y.H., Cai, X.R., Zhang, Y., et al. (2018) Multivariate Time Series Imputation with Generative Adversarial Networks. Advances in Neural Information Processing Systems, 31, 1-12. |
[22] | Bressler, S.L. and Seth, A.K. (2011) Wiener-Granger Causality: A Well-Established Methodology. NeuroImage, 58, 323-329. https://doi.org/10.1016/j.neuroimage.2010.02.059 |
[23] | Wiener, N. and Masani, P. (1957) The Prediction Theory of Multivariate Stochastic Processes: I. The Regularity Condition. Acta Mathematica, 98, 111-150. https://doi.org/10.1007/bf02404472 |
[24] | Marinazzo, D., Pellicoro, M. and Stramaglia, S. (2008) Kernel Method for Nonlinear Granger Causality. Physical Review Letters, 100, Article 144103. https://doi.org/10.1103/physrevlett.100.144103 |
[25] | Chen, Y., Rangarajan, G., Feng, J. and Ding, M. (2004) Analyzing Multiple Nonlinear Time Series with Extended Granger Causality. Physics Letters A, 324, 26-35. https://doi.org/10.1016/j.physleta.2004.02.032 |
[26] | Zhang, W., Tanida, J., Itoh, K. and Ichioka, Y. (1988) Shift-Invariant Pattern Recognition Neural Network and Its Optical Architecture. Proceedings of Annual Conference of the Japan Society of Applied Physics, 564, 2147-2151. |
[27] | Zhang, K., Zhong, G., Dong, J., Wang, S. and Wang, Y. (2019) Stock Market Prediction Based on Generative Adversarial Network. Procedia Computer Science, 147, 400-406. https://doi.org/10.1016/j.procs.2019.01.256 |
[28] | Beck, A. and Teboulle, M. (2009) A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2, 183-202. https://doi.org/10.1137/080716542 |
[29] | Amari, S. (1993) Backpropagation and Stochastic Gradient Descent Method. Neurocomputing, 5, 185-196. https://doi.org/10.1016/0925-2312(93)90006-o |
[30] | Kugiumtzis, D. (2013) Direct-Coupling Information Measure from Nonuniform Embedding. Physical Review E, 87, Article 062918. https://doi.org/10.1103/physreve.87.062918 |
[31] | Lorenz, E.N. (1996) Predictability: A Problem Partly Solved. Proceedings of Seminar on Predictability, 1, 1-18. |
[32] | Prechelt, L. (1998) Early Stopping, But When? In: Lecture Notes in Computer Science, Springer, 55-69. https://doi.org/10.1007/3-540-49430-8_3 |