|
基于纳米颗粒递送的dsRNA在农林植物病虫害防治中的应用
|
Abstract:
随着全球森林和农作物病虫害问题的日益严重,传统化学农药防治方法因其环境污染和生物抗性问题而受到公众的质疑。近年来,越来越多的研究者将目光转向RNA干扰(RNAi)技术,利用RNAi的特性控制农林植物病虫害,并减少对环境的负面影响。本综述聚焦于RNAi技术的原理、外源性dsRNA的应用,并分析目前面临的机遇和挑战。同时探讨纳米颗粒在dsRNA递送应用方面的研究进展,如壳聚糖纳米颗粒(CNPs)、层状氢氧化物(LDH)和星形阳离子聚合物(SPc)等,这些纳米颗粒可以有效保护dsRNA并提高其传递效率。这些研究为农林业可持续发展提供了新的解决方案,有助于保护森林植被和提高农作物的产量与质量。
With the increasing problems of pest and disease of global forests and crops, traditional chemical pesticide control methods are being questioned due to environmental pollution and biological resistance issues. However, recently, more researchers have turned to RNA interference (RNAi) technology, using the properties of RNAi to control plant pests and diseases, reducing the negative impact on the environments. This review focuses on the principles of RNAi technology, the applications of exogenous double-stranded RNA (dsRNA), while analyzing the associated opportunities and challenges. Additionally, we explored the research progress in nanoparticle delivery systems for dsRNA, such as chitosan nanoparticles (CNPs), layered double hydroxide (LDH), and star polycation (SPc), which effectively protect dsRNA and enhance its delivery efficiency. These studies provide innovative solutions for sustainable agricultural and forestry development, contributing to the preservation of forest and the improvement of crop yields and quality.
[1] | 粮农组织. 2024年世界森林状况: 促进林业部门创新, 迈向可持续未来[M]. 罗马: 粮农组织, 2024. |
[2] | Moore, D., Robson, G.D. and Trinci, A.P.J. (2011) 21st Century Guidebook to Fungi. Cambridge University Press. |
[3] | Eskola, M., Kos, G., Elliott, C.T., Hajšlová, J., Mayar, S. and Krska, R. (2019) Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Critical Reviews in Food Science and Nutrition, 60, 2773-2789. https://doi.org/10.1080/10408398.2019.1658570 |
[4] | 陈夕军, 石童, 陈宸, 唐滔. 喷施诱导的基因沉默(SIGS)技术控制植物病害研究进展[J]. 植物保护, 2022, 48(5): 15-22. |
[5] | Fletcher, S.J., Reeves, P.T., Hoang, B.T. and Mitter, N. (2020) A Perspective on RNAi-Based Biopesticides. Frontiers in Plant Science, 11, Article 51. https://doi.org/10.3389/fpls.2020.00051 |
[6] | Spada, M., Pugliesi, C., Fambrini, M. and Pecchia, S. (2024) Challenges and Opportunities Arising from Host-Botrytis Cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. International Journal of Molecular Sciences, 25, Article 6798. https://doi.org/10.3390/ijms25126798 |
[7] | Khalid, A., Zhang, Q., Yasir, M. and Li, F. (2017) Small RNA Based Genetic Engineering for Plant Viral Resistance: Application in Crop Protection. Frontiers in Microbiology, 8, Article 43. https://doi.org/10.3389/fmicb.2017.00043 |
[8] | Mitter, N., Worrall, E.A., Robinson, K.E., Xu, Z.P. and Carroll, B.J. (2017) Induction of Virus Resistance by Exogenous Application of Double-Stranded RNA. Current Opinion in Virology, 26, 49-55. https://doi.org/10.1016/j.coviro.2017.07.009 |
[9] | Opdensteinen, P., Charudattan, R., Hong, J.C., Rosskopf, E.N. and Steinmetz, N.F. (2024) Biochemical and Nanotechnological Approaches to Combat Phytoparasitic Nematodes. Plant Biotechnology Journal, 22, 2444-2460. https://doi.org/10.1111/pbi.14359 |
[10] | Zotti, M., dos Santos, E.A., Cagliari, D., Christiaens, O., Taning, C.N.T. and Smagghe, G. (2018) RNA Interference Technology in Crop Protection against Arthropod Pests, Pathogens and Nematodes. Pest Management Science, 74, 1239-1250. https://doi.org/10.1002/ps.4813 |
[11] | Wong, C.K.F., Saidi, N.B., Vadamalai, G., Teh, C.Y. and Zulperi, D. (2019) Effect of Bioformulations on the Biocontrol Efficacy, Microbial Viability and Storage Stability of a Consortium of Biocontrol Agents against fusarium Wilt of Banana. Journal of Applied Microbiology, 127, 544-555. https://doi.org/10.1111/jam.14310 |
[12] | Wang, B., Liu, J., Liu, Q., Sun, J., Zhao, Y., Liu, J., et al. (2023) Knowledge Domain and Research Progress in the Field of Crop Rotation from 2000 to 2020: A Scientometric Review. Environmental Science and Pollution Research, 30, 86598-86617. https://doi.org/10.1007/s11356-023-28266-6 |
[13] | Ray, P., Sahu, D., Aminedi, R. and Chandran, D. (2022) Concepts and Considerations for Enhancing RNAi Efficiency in Phytopathogenic Fungi for RNAi-Based Crop Protection Using Nanocarrier-Mediated dsRNA Delivery Systems. Frontiers in Fungal Biology, 3, Article 977502. https://doi.org/10.3389/ffunb.2022.977502 |
[14] | Dietzgen, R.G. and Mitter, N. (2006) Transgenic Gene Silencing Strategies for Virus Control. Australasian Plant Pathology, 35, 605-618. https://doi.org/10.1071/ap06064 |
[15] | Zhao, J. and Guo, H. (2022) RNA Silencing: From Discovery and Elucidation to Application and Perspectives. Journal of Integrative Plant Biology, 64, 476-498. https://doi.org/10.1111/jipb.13213 |
[16] | Agrawal, N., Dasaradhi, P.V.N., Mohmmed, A., Malhotra, P., Bhatnagar, R.K. and Mukherjee, S.K. (2003) RNA Interference: Biology, Mechanism, and Applications. Microbiology and Molecular Biology Reviews, 67, 657-685. https://doi.org/10.1128/mmbr.67.4.657-685.2003 |
[17] | Preall, J.B. and Sontheimer, E.J. (2005) RNAi: RISC Gets Loaded. Cell, 123, 543-545. https://doi.org/10.1016/j.cell.2005.11.006 |
[18] | Iwakawa, H. and Tomari, Y. (2022) Life of RISC: Formation, Action, and Degradation of RNA-Induced Silencing Complex. Molecular Cell, 82, 30-43. https://doi.org/10.1016/j.molcel.2021.11.026 |
[19] | 尚仁福, 吴立刚. RNA干扰的机制及其应用[J]. 生命科学, 2016, 28(5): 576-583. |
[20] | Shidore, T., Zuverza-Mena, N., White, J.C. and da Silva, W. (2021) Nanoenabled Delivery of RNA Molecules for Prolonged Antiviral Protection in Crop Plants: A Review. ACS Applied Nano Materials, 4, 12891-12904. https://doi.org/10.1021/acsanm.1c03512 |
[21] | Niu, J., Jian, H., Xu, J., Chen, C., Guo, Q., Liu, Q., et al. (2012) RNAi Silencing of the Meloidogyne Incognita Rpn7 Gene Reduces Nematode Parasitic Success. European Journal of Plant Pathology, 134, 131-144. https://doi.org/10.1007/s10658-012-9971-y |
[22] | Nerva, L., Sandrini, M., Gambino, G. and Chitarra, W. (2020) Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold (Botrytis cinerea) in Grapevine: Effectiveness of Different Application Methods in an Open-Air Environment. Biomolecules, 10, Article 200. https://doi.org/10.3390/biom10020200 |
[23] | Zhang, H., Li, X., Yu, D., Guan, J., Ding, H., Wu, H., et al. (2023) A Vector-Free Gene Interference System Using Delaminated Mg-Al-Lactate Layered Double Hydroxide Nanosheets as Molecular Carriers to Intact Plant Cells. Plant Methods, 19, Article No. 44. https://doi.org/10.1186/s13007-023-01021-1 |
[24] | Yan, S., Ren, B. and Shen, J. (2020) Nanoparticle-Mediated Double-Stranded RNA Delivery System: A Promising Approach for Sustainable Pest Management. Insect Science, 28, 21-34. https://doi.org/10.1111/1744-7917.12822 |
[25] | Abdellatef, E., Kamal, N.M. and Tsujimoto, H. (2021) Tuning Beforehand: A Foresight on RNA Interference (RNAi) and in Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses. International Journal of Molecular Sciences, 22, Article 7687. https://doi.org/10.3390/ijms22147687 |
[26] | Andika, I.B., Wei, S., Cao, C., Salaipeth, L., Kondo, H. and Sun, L. (2017) Phytopathogenic Fungus Hosts a Plant Virus: A Naturally Occurring Cross-Kingdom Viral Infection. Proceedings of the National Academy of Sciences, 114, 12267-12272. https://doi.org/10.1073/pnas.1714916114 |
[27] | Cai, Q., Qiao, L., Wang, M., He, B., Lin, F., Palmquist, J., et al. (2018) Plants Send Small RNAs in Extracellular Vesicles to Fungal Pathogen to Silence Virulence Genes. Science, 360, 1126-1129. https://doi.org/10.1126/science.aar4142 |
[28] | Wang, M., Weiberg, A., Lin, F., Thomma, B.P.H.J., Huang, H. and Jin, H. (2016) Bidirectional Cross-Kingdom RNAi and Fungal Uptake of External RNAs Confer Plant Protection. Nature Plants, 2, Article No. 16151. https://doi.org/10.1038/nplants.2016.151 |
[29] | Capriotti, L., Molesini, B., Pandolfini, T., Jin, H., Baraldi, E., Cecchin, M., et al. (2024) RNA Interference-Based Strategies to Control Botrytis Cinerea Infection in Cultivated Strawberry. Plant Cell Reports, 43, Article No. 201. https://doi.org/10.1007/s00299-024-03288-7 |
[30] | Sun, L., Liu, P., Zhang, C., Du, H., Wang, Z., Moural, T.W., et al. (2019) Ocular Albinism Type 1 Regulates Deltamethrin Tolerance in Lymantria Dispar and Drosophila Melanogaster. Frontiers in Physiology, 10, Article 766. https://doi.org/10.3389/fphys.2019.00766 |
[31] | San Miguel, K. and Scott, J.G. (2015) The Next Generation of Insecticides: dsRNA Is Stable as a Foliar-Applied Insecticide. Pest Management Science, 72, 801-809. https://doi.org/10.1002/ps.4056 |
[32] | Majumdar, R., Rajasekaran, K. and Cary, J.W. (2017) RNA Interference (RNAi) as a Potential Tool for Control of Mycotoxin Contamination in Crop Plants: Concepts and Considerations. Frontiers in Plant Science, 8, Article 200. https://doi.org/10.3389/fpls.2017.00200 |
[33] | Wang, X., Ji, S., Bi, S., Tang, Y., Zhang, G., Yan, S., et al. (2023) A Promising Approach to an Environmentally Friendly Pest Management Solution: Nanocarrier-Delivered dsRNA towards Controlling the Destructive Invasive Pest Tuta absoluta. Environmental Science: Nano, 10, 1003-1015. https://doi.org/10.1039/d2en01076c |
[34] | Hunter, W.B., Glick, E., Paldi, N. and Bextine, B.R. (2012) Advances in RNA Interference: dsRNA Treatment in Trees and Grapevines for Insect Pest Suppression. Southwestern Entomologist, 37, 85-87. https://doi.org/10.3958/059.037.0110 |
[35] | Wang, M. and Jin, H. (2017) Spray-Induced Gene Silencing: A Powerful Innovative Strategy for Crop Protection. Trends in Microbiology, 25, 4-6. https://doi.org/10.1016/j.tim.2016.11.011 |
[36] | McLoughlin, A.G., Wytinck, N., Walker, P.L., Girard, I.J., Rashid, K.Y., de Kievit, T., et al. (2018) Identification and Application of Exogenous dsRNA Confers Plant Protection against Sclerotinia sclerotiorum and Botrytis cinerea. Scientific Reports, 8, Article No. 7320. https://doi.org/10.1038/s41598-018-25434-4 |
[37] | Song, X., Gu, K., Duan, X., Xiao, X., Hou, Y., Duan, Y., et al. (2018) Secondary Amplification of siRNA Machinery Limits the Application of Spray-Induced Gene Silencing. Molecular Plant Pathology, 19, 2543-2560. https://doi.org/10.1111/mpp.12728 |
[38] | Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., et al. (2016) An RNAi-Based Control of Fusarium Graminearum Infections through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLOS Pathogens, 12, e1005901. https://doi.org/10.1371/journal.ppat.1005901 |
[39] | Gu, K., Song, X., Xiao, X., Duan, X., Wang, J., Duan, Y., et al. (2019) A Β-Tubulin dsRNA Derived from Fusarium asiaticum Confers Plant Resistance to Multiple Phytopathogens and Reduces Fungicide Resistance. Pesticide Biochemistry and Physiology, 153, 36-46. https://doi.org/10.1016/j.pestbp.2018.10.005 |
[40] | Dubelman, S., Fischer, J., Zapata, F., Huizinga, K., Jiang, C., Uffman, J., et al. (2014) Environmental Fate of Double-Stranded RNA in Agricultural Soils. PLOS ONE, 9, e93155. https://doi.org/10.1371/journal.pone.0093155 |
[41] | Prentice, K., Smagghe, G., Gheysen, G. and Christiaens, O. (2019) Nuclease Activity Decreases the RNAi Response in the Sweetpotato Weevil Cylas puncticollis. Insect Biochemistry and Molecular Biology, 110, 80-89. https://doi.org/10.1016/j.ibmb.2019.04.001 |
[42] | Song, H., Fan, Y., Zhang, J., Cooper, A.M., Silver, K., Li, D., et al. (2019) Contributions of dsRNases to Differential RNAi Efficiencies between the Injection and Oral Delivery of dsRNA in Locusta migratoria. Pest Management Science, 75, 1707-1717. https://doi.org/10.1002/ps.5291 |
[43] | Qiao, L., Lan, C., Capriotti, L., Ah-Fong, A., Nino Sanchez, J., Hamby, R., et al. (2021) Spray-Induced Gene Silencing for Disease Control Is Dependent on the Efficiency of Pathogen RNA Uptake. Plant Biotechnology Journal, 19, 1756-1768. https://doi.org/10.1111/pbi.13589 |
[44] | 付淑笙, 江奕舟, 蒋沁宏, 沈杰, 闫硕. 基于纳米递送系统的RNA农药及转基因植物研究进展[J]. 植物保护学报, 2021, 48(2): 267-274. |
[45] | Negm, N.A., Hefni, H.H.H., Abd-Elaal, A.A.A., Badr, E.A. and Abou Kana, M.T.H. (2020) Advancement on Modification of Chitosan Biopolymer and Its Potential Applications. International Journal of Biological Macromolecules, 152, 681-702. https://doi.org/10.1016/j.ijbiomac.2020.02.196 |
[46] | Zhou, H., Wan, F., Jian, Y., Guo, F., Zhang, M., Shi, S., et al. (2023) Chitosan/dsRNA Polyplex Nanoparticles Advance Environmental RNA Interference Efficiency through Activating Clathrin-Dependent Endocytosis. International Journal of Biological Macromolecules, 253, Article 127021. https://doi.org/10.1016/j.ijbiomac.2023.127021 |
[47] | Zhang, X., Zhang, J. and Zhu, K.Y. (2010) Chitosan/Double-Stranded RNA Nanoparticle-Mediated RNA Interference to Silence Chitin Synthase Genes through Larval Feeding in the African Malaria Mosquito (Anopheles gambiae). Insect Molecular Biology, 19, 683-693. https://doi.org/10.1111/j.1365-2583.2010.01029.x |
[48] | Zhang, X., Mysore, K., Flannery, E., Michel, K., Severson, D.W., Zhu, K.Y., et al. (2015) Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae. Journal of Visualized Experiments, 96, 181-191. https://doi.org/10.3791/52523 |
[49] | Kolge, H., Kadam, K., Galande, S., Lanjekar, V. and Ghormade, V. (2021) New Frontiers in Pest Control: Chitosan Nanoparticles-Shielded dsRNA as an Effective Topical RNAi Spray for Gram Podborer Biocontrol. ACS Applied Bio Materials, 4, 5145-5157. https://doi.org/10.1021/acsabm.1c00349 |
[50] | Wang, X., Zheng, K., Cheng, W., Li, J., Liang, X., Shen, J., et al. (2021) Field Application of Star Polymer-Delivered Chitosan to Amplify Plant Defense against Potato Late Blight. Chemical Engineering Journal, 417, Article 129327. https://doi.org/10.1016/j.cej.2021.129327 |
[51] | Wang, Y., Yan, Q., Lan, C., Tang, T., Wang, K., Shen, J., et al. (2023) Nanoparticle Carriers Enhance RNA Stability and Uptake Efficiency and Prolong the Protection against Rhizoctonia Solani. Phytopathology Research, 5, Article No. 2. https://doi.org/10.1186/s42483-023-00157-1 |
[52] | Dhandapani, R.K., Gurusamy, D., Howell, J.L. and Palli, S.R. (2019) Development of CS-TPP-dsRNA Nanoparticles to Enhance RNAi Efficiency in the Yellow Fever Mosquito, Aedes Aegypti. Scientific Reports, 9, Article No, 8775. https://doi.org/10.1038/s41598-019-45019-z |
[53] | Dong, H., Chen, M., Rahman, S., Parekh, H.S., Cooper, H.M. and Xu, Z.P. (2014) Engineering Small MgAl-Layered Double Hydroxide Nanoparticles for Enhanced Gene Delivery. Applied Clay Science, 100, 66-75. https://doi.org/10.1016/j.clay.2014.04.028 |
[54] | Xu, Z.P., Stevenson, G.S., Lu, C., Lu, G.Q., Bartlett, P.F. and Gray, P.P. (2005) Stable Suspension of Layered Double Hydroxide Nanoparticles in Aqueous Solution. Journal of the American Chemical Society, 128, 36-37. https://doi.org/10.1021/ja056652a |
[55] | Zhang, L., Hu, J., Jia, Y., Liu, R., Cai, T. and Xu, Z.P. (2021) Two-Dimensional Layered Double Hydroxide Nanoadjuvant: Recent Progress and Future Direction. Nanoscale, 13, 7533-7549. https://doi.org/10.1039/d1nr00881a |
[56] | Mitter, N., Worrall, E.A., Robinson, K.E., Li, P., Jain, R.G., Taochy, C., et al. (2017) Clay Nanosheets for Topical Delivery of RNAi for Sustained Protection against Plant Viruses. Nature Plants, 3, Article No. 16207. https://doi.org/10.1038/nplants.2016.207 |
[57] | Duanis-Assaf, D., Shlar, I., Galsurker, O., Davydov, O., Maurer, D., Feygenberg, O., et al. (2022) Nano-Clay, Layered-Double Hydroxide (LDH), Improves the Efficacy of Double-Stranded RNA in Controlling Postharvest Decay. Postharvest Biology and Technology, 193, Article 112051. https://doi.org/10.1016/j.postharvbio.2022.112051 |
[58] | Niño-Sánchez, J., Sambasivam, P.T., Sawyer, A., Hamby, R., Chen, A., Czislowski, E., et al. (2022) Bioclay Prolongs RNA Interference-Mediated Crop Protection against Botrytis cinerea. Journal of Integrative Plant Biology, 64, 2187-2198. https://doi.org/10.1111/jipb.13353 |
[59] | Xi, Y., Long, X., Song, M., Liu, Y., Yan, J., Lv, Y., et al. (2024) The Fatty Acid 2-Hydroxylase Csscs7 Is a Key Hyphal Growth Factor and Potential Control Target in Colletotrichum siamense. mBio, 15, e02015-23. https://doi.org/10.1128/mbio.02015-23 |
[60] | Tang, X., Jiang, X., Chen, Q. and Lin, X. (2024) Amphiphilic Layered Double Hydroxides Enhance Plant-Mediated Delivery of dsRNAs to Phloem‑feeding Planthoppers. Chemical Engineering Journal, 491, Article 151953. https://doi.org/10.1016/j.cej.2024.151953 |
[61] | Li, J., Qian, J., Xu, Y., Yan, S., Shen, J. and Yin, M. (2019) A Facile-Synthesized Star Polycation Constructed as a Highly Efficient Gene Vector in Pest Management. ACS Sustainable Chemistry & Engineering, 7, 6316-6322. https://doi.org/10.1021/acssuschemeng.9b00004 |
[62] | Li, M., Ma, Z., Peng, M., Li, L., Yin, M., Yan, S., et al. (2022) A Gene and Drug Co-Delivery Application Helps to Solve the Short Life Disadvantage of RNA Drug. Nano Today, 43, Article 101452. https://doi.org/10.1016/j.nantod.2022.101452 |
[63] | Zhao, J., Yan, S., Li, M., Sun, L., Dong, M., Yin, M., et al. (2023) NPFR Regulates the Synthesis and Metabolism of Lipids and Glycogen via AMPK: Novel Targets for Efficient Corn Borer Management. International Journal of Biological Macromolecules, 247, Article 125816. https://doi.org/10.1016/j.ijbiomac.2023.125816 |
[64] | Yan, S., Ren, B., Zeng, B. and Shen, J. (2020) Improving RNAi Efficiency for Pest Control in Crop Species. BioTechniques, 68, 283-290. https://doi.org/10.2144/btn-2019-0171 |
[65] | Yan, S., Qian, J., Cai, C., Ma, Z., Li, J., Yin, M., et al. (2019) Spray Method Application of Transdermal dsRNA Delivery System for Efficient Gene Silencing and Pest Control on Soybean Aphid Aphis Glycines. Journal of Pest Science, 93, 449-459. https://doi.org/10.1007/s10340-019-01157-x |
[66] | Wang, Y., Li, M., Ying, J., Shen, J., Dou, D., Yin, M., et al. (2023) High-Efficiency Green Management of Potato Late Blight by a Self-Assembled Multicomponent Nano-Bioprotectant. Nature Communications, 14, Article No. 5622. https://doi.org/10.1038/s41467-023-41447-8 |
[67] | Yin, J., Zhao, J., Wang, Z., Xue, F., Wang, Q., Guo, H., et al. (2024) Preparation of Salicylic Acid Nano-Protectant with Dual Synergistic Mechanism: High Direct Fungicidal Activity and Plant Defence toward Cotton Verticillium Wilt. Chemical Engineering Journal, 496, Article 154036. https://doi.org/10.1016/j.cej.2024.154036 |
[68] | Qiao, L., Niño-Sánchez, J., Hamby, R., Capriotti, L., Chen, A., Mezzetti, B., et al. (2023) Artificial Nanovesicles for dsRNA Delivery in Spray-Induced Gene Silencing for Crop Protection. Plant Biotechnology Journal, 21, 854-865. https://doi.org/10.1111/pbi.14001 |
[69] | Wang, Z., Li, Y., Zhang, B., Gao, X., Shi, M., Zhang, S., et al. (2023) Functionalized Carbon Dot-Delivered RNA Nano Fungicides as Superior Tools to Control Phytophthora Pathogens through Plant RdRP1 Mediated Spray-Induced Gene Silencing. Advanced Functional Materials, 33, Article 2213143. https://doi.org/10.1002/adfm.202213143 |
[70] | Lin, Y., Huang, J., Liu, Y., Belles, X. and Lee, H. (2016) Oral Delivery of dsRNA Lipoplexes to German Cockroach Protects dsRNA from Degradation and Induces RNAi Response. Pest Management Science, 73, 960-966. https://doi.org/10.1002/ps.4407 |
[71] | Islam, M.T., Davis, Z., Chen, L., Englaender, J., Zomorodi, S., Frank, J., et al. (2021) Minicell-Based Fungal RNAi Delivery for Sustainable Crop Protection. Microbial Biotechnology, 14, 1847-1856. https://doi.org/10.1111/1751-7915.13699 |
[72] | Zhang, H., Cao, Y., Xu, D., Goh, N.S., Demirer, G.S., Cestellos-Blanco, S., et al. (2021) Gold-Nanocluster-Mediated Delivery of siRNA to Intact Plant Cells for Efficient Gene Knockdown. Nano Letters, 21, 5859-5866. https://doi.org/10.1021/acs.nanolett.1c01792 |
[73] | Thagun, C., Motoda, Y., Kigawa, T., Kodama, Y. and Numata, K. (2020) Simultaneous Introduction of Multiple Biomacromolecules into Plant Cells Using a Cell-Penetrating Peptide Nanocarrier. Nanoscale, 12, 18844-18856. https://doi.org/10.1039/d0nr04718j |
[74] | 王晓迪, 冀顺霞, 申晓娜, 刘万学, 万方浩, 张桂芬, 吕志创. 纳米载导RNAi技术在害虫防治中的研究和应用[J]. 中国生物防治学报, 2021, 37(6): 1298-1312. |
[75] | Singewar, K. and Fladung, M. (2023) Double-Stranded RNA (dsRNA) Technology to Control Forest Insect Pests and Fungal Pathogens: Challenges and Opportunities. Functional & Integrative Genomics, 23, Article No. 185. https://doi.org/10.1007/s10142-023-01107-y |
[76] | Mendelsohn, M.L., Gathmann, A., Kardassi, D., Sachana, M., Hopwood, E.M., Dietz-Pfeilstetter, A., et al. (2020) Summary of Discussions from the 2019 OECD Conference on RNAi Based Pesticides. Frontiers in Plant Science, 11, Article 740. https://doi.org/10.3389/fpls.2020.00740 |