全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于传感时滞数据多胞滤波的锂电池运行状态估计与硬件验证
State Estimation of Lithium Battery SoC and Its Hardware Verification Based on Senor Delaying Zonotopic Filtering Algorithm

DOI: 10.12677/jsta.2025.133022, PP. 222-228

Keywords: 传感器,时滞,多胞体,锂电池,SoC,状态估计
Sensor
, Time Delay, Zonotope, Lithium Battery, SoC, State Estimation

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于多胞滤波状态估计理论,提出一种含有传感时滞的多胞滤波算法,并将其应用于锂电池运行时的状态估计与监测中。首先基于锂电池的Thevenin等效电路模型,构建状态空间模型。在此基础上构建状态预测集,并将其与含时滞传感测量数据结合,基于多胞体的闵可夫斯基性质,构建含参估计集。并通过F半径多胞收缩模型,对滤波系数进行最优化,从而获得锂电池SoC的最优估计。通过锂电池充放电实验平台的实验验证,所提出的算法相较于传统ZKF算法具有更高的精度,保守性明显下降。
Based on the zonotopic filtering estimation theory, a zonotopic filtering algorithm with sensor time delay is proposed and applied to the state estimation and monitoring of lithium batteries. Firstly, a state space model is constructed based on the Thevenin circuit model of lithium batteries. On this basis, a state prediction set is constructed and combined with the time-delayed sensor measurement data. Based on the Minkowski property of zonotopes, an estimation set is constructed. By applying the F-radius contraction model, the filtering coefficient is optimized to obtain the optimal estimation of the SoC. Experimental verification on the lithium battery charge and discharge experimental platform shows that the proposed algorithm has higher accuracy and significantly reduced conservativeness compared with the conventional ZKF algorithm.

References

[1]  宋云霞, 周彬. 具有多个时滞的积分时滞系统的稳定性分析[J]. 控制与决策, 2023, 38(2): 562-568.
[2]  Cui, Z., Wang, L., Li, Q. and Wang, K. (2021) A Comprehensive Review on the State of Charge Estimation for Lithium‐ion Battery Based on Neural Network. International Journal of Energy Research, 46, 5423-5440.
https://doi.org/10.1002/er.7545
[3]  刘芳, 邵晨, 苏卫星. 基于全新等效电路模型的电池关键状态在线联合估计器[J]. 控制与决策, 2023, 38(6): 1620-1628.
[4]  Pesaran, A.A. (2002) Battery Thermal Models for Hybrid Vehicle Simulations. Journal of Power Sources, 110, 377-382.
https://doi.org/10.1016/s0378-7753(02)00200-8
[5]  Bobobee, E.D., Wang, S., Zou, C., Appiah, E., Zhou, H., Takyi-Aninakwa, P., et al. (2022) Improved Fixed Range Forgetting Factor-Adaptive Extended Kalman Filtering (FRFF-AEKF) Algorithm for the State of Charge Estimation of High-Power Lithium-Ion Batteries. International Journal of Electrochemical Science, 17, Article ID: 221146.
https://doi.org/10.20964/2022.11.46
[6]  陈明亮, 王丹, 王晓玉, 等. 电池SOC估算中安时积分法以及开路电压法的改进[J]. 机电工程技术, 2023, 52(7): 198-201.
[7]  Wang, W., Zhu, L., Su, Y., Huang, S. and Geng, Y. (2024) Interval Estimation of Sensor Fault in Rotary Steerable Drilling Tools Based on Set-Membership Approach. Journal of Process Control, 143, Article ID: 103318.
https://doi.org/10.1016/j.jprocont.2024.103318
[8]  王新栋, 董政, 王书华, 等. 基于改进开路电压模型和自适应平方根无迹卡尔曼滤波的锂离子电池宽温度多工况SOC估计[J]. 电工技术学报, 2024, 39(24): 7950-7964.
[9]  Chen, Y., Liu, Y., Du, W., Li, Q., Wang, H., Li, Q., et al. (2024) Identification of the Parameters of the Aluminum-Air Battery with Regard to Temperature. Journal of Energy Storage, 88, Article ID: 111397.
https://doi.org/10.1016/j.est.2024.111397
[10]  刘旖琦, 雷万钧, 刘茜, 等. 基于双自适应扩展粒子滤波器的锂离子电池状态联合估计[J]. 电工技术学报, 2024, 39(2): 607-616.
[11]  Lee, K., Lee, W. and Kim, K.K. (2023) Battery State-Of-Charge Estimation Using Data-Driven Gaussian Process Kalman Filters. Journal of Energy Storage, 72, Article ID: 108392.
https://doi.org/10.1016/j.est.2023.108392
[12]  Wang, X., Wang, G., Li, Z. and Fei, Z. (2023) Event-based Fault Estimation and Compensation for Discrete-Time Systems via Zonotopes. Information Sciences, 631, 1-14.
https://doi.org/10.1016/j.ins.2023.02.073
[13]  Althoff, M. and Rath, J.J. (2021) Comparison of Guaranteed State Estimators for Linear Time-Invariant Systems. Automatica, 130, Article ID: 109662.
https://doi.org/10.1016/j.automatica.2021.109662
[14]  贾先屹, 王顺利, 曹文, 等. 基于二阶RC等效电路和SR-DUKF算法的锂电池SOC估算研究[J].电源学报, 2024, 22(4): 236-242.
[15]  Wu, M., Wang, L., Wang, Y. and Wu, J. (2024) State of Charge Estimation of the Lithium-Ion Power Battery Based on a Multi-Time-Scale Improved Adaptive Unscented Kalman Filter. IEEE Transactions on Instrumentation and Measurement, 73, 1-12.
https://doi.org/10.1109/tim.2024.3390162
[16]  Liang, C., Xia, B., Yue, S., Zhang, F., Qu, L. and Wang, S. (2024) A Quantum Particle Swarm Optimization Extended Kalman Quantum Particle Filter Approach on State of Charge Estimation for Lithium-Ion Battery. Journal of Energy Storage, 100, Article ID: 113677.
https://doi.org/10.1016/j.est.2024.113677

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133