全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

嵌套UNet++模型的脑肿瘤图像分割算法研究
Research on the Brain Tumor Image Segmentation Algorithm Based on an Improved UNet++ Model

DOI: 10.12677/jsta.2025.133021, PP. 211-221

Keywords: 脑肿瘤图像分割,UNet++,MCAM,CA注意力机制,SME
Brain Tumor Image Segmentation
, UNet++, MCAM, Coordinate Attention Mechanism, SME

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对计算机辅助脑肿瘤图像边缘分割模糊、分割精度不高等问题,提出了一种改进的嵌套UNet++脑肿瘤图像分割算法。首先设计MCAM (Mish Coordinate Attention Module)模块代替原UNet++的特征提取部分,嵌入坐标注意力机制(Coordinate Attention, CA)关注不同方向上的位置信息以增强特征提取能力,使用Mish激活函数替换ReLU激活函数防止出现梯度消失,提高脑肿瘤图像分割精度和泛化能力;其次在特征提取后加入SME (Squeeze Mish Excitation Block)模块进行挤压和激励,扩大特征图的感受野以增强对肿瘤特征的学习能力;最后利用焦点Dice损失函数关注模糊样本的分割,从而改善脑肿瘤图像边缘分割模糊的问题。提出的算法在Figshare数据集上进行仿真实验,实验结果表明在MIoU、MPA、Dice和Hausdorff评估指标上分别达到83.26%、81.91%、86.45%和18.57 mm。与3DUnet、Swin-UNet、DD-UNet、LRAE-UNet和AI-UNet等主流算法进行对比,证明提出的算法分割效果更优。
Aiming at the problems of blurred edge segmentation and low segmentation accuracy of computer-aided brain tumor images, an improved nested UNet++ brain tumor image segmentation algorithm was proposed. Firstly, the MCAM module is designed to replace the feature extraction part of the original UNet++. The CA attention mechanism is used to focus on positioning information in different directions to improve feature extraction capabilities. The Mish activation function is used to replace the ReLU activation function to prevent gradient disappearance and improve segmentation. Accuracy and generalization ability; then add the SME module after feature extraction for squeezing and excitation to enhance the receptive field of the feature map to enhance the learning ability of tumor features; finally, use the focus Dice loss function to focus on fuzzy samples segmentation, thereby improving the problem of blurred edge segmentation of brain tumor images. The proposed algorithm was simulated on the Figshare dataset. The experimental results showed that it achieved 83.26%, 81.91%, 86.45% and 18.57 mm in MIoU, MPA, Dice and Hausdorff evaluation indicators respectively. Comparison with algorithms such as 3DUnet, Swin-UNet, DD-UNet, LRAE-UNet and AI-UNet proves that the proposed algorithm has a better segmentation effect.

References

[1]  Batool, A. and Byun, Y. (2024) Brain Tumor Detection with Integrating Traditional and Computational Intelligence Approaches across Diverse Imaging Modalities—Challenges and Future Directions. Computers in Biology and Medicine, 175, Article 108412.
https://doi.org/10.1016/j.compbiomed.2024.108412
[2]  唐少平, 陶蔷. 磁共振成像在脑部疾病诊断中的研究进展[J]. 中国现代医生, 2023, 61(25): 132-135.
[3]  Mohan, G. and Subashini, M.M. (2018) MRI Based Medical Image Analysis: Survey on Brain Tumor Grade Classification. Biomedical Signal Processing and Control, 39, 139-161.
https://doi.org/10.1016/j.bspc.2017.07.007
[4]  Hu, H., Mao, W., Lin, Z., Hu, Q. and Zhang, Y. (2021) Multimodal Brain Tumor Segmentation Based on an Intelligent UNET-LSTM Algorithm in Smart Hospitals. ACM Transactions on Internet Technology, 21, 1-14.
https://doi.org/10.1145/3450519
[5]  Feng, Z. and Sun, P. (2019) Image Segmentation Based on Improved Regional Growth Method (Article). International Journal of Circuits, Systems and Signal Processing, 13, 162-169.
[6]  Sasmal, B. and Dhal, K.G. (2023) A Survey on the Utilization of Superpixel Image for Clustering Based Image Segmentation. Multimedia Tools and Applications, 82, 35493-35555.
https://doi.org/10.1007/s11042-023-14861-9
[7]  唐璐, 赵英. 基于深度学习的图像分割技术研究综述[J]. 电脑知识与技术, 2023, 19(23): 30-32.
[8]  王赛男, 郑雄风. 基于边缘计算的图像语义分割应用与研究[J]. 计算机科学, 2020(47): 276-280.
[9]  彭璟, 罗浩宇, 赵淦森, 等. 深度学习下的医学影像分割算法综述[J]. 计算机工程与应用, 2021, 57(3): 44-57.
[10]  Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Lecture Notes in Computer Science, Springer, 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28
[11]  黄敬腾, 李锵, 关欣. 一种用于脑肿瘤分割的改进U形网络[J]. 工程科学学报, 2023, 45(6): 1003-1012.
[12]  Cao, T., Wang, G., Ren, L., Li, Y. and Wang, H. (2022) Brain Tumor Magnetic Resonance Image Segmentation by a Multiscale Contextual Attention Module Combined with a Deep Residual UNet (MCA-ResUNet). Physics in Medicine & Biology, 67, Article 095007.
https://doi.org/10.1088/1361-6560/ac5e5c
[13]  Maji, D., Sigedar, P. and Singh, M. (2022) Attention Res-UNet with Guided Decoder for Semantic Segmentation of Brain Tumors. Biomedical Signal Processing and Control, 71, Article 103077.
https://doi.org/10.1016/j.bspc.2021.103077
[14]  侯奕辰, 彭辉, 谢俊章, 等. 改进Unet++在脑肿瘤图像分割的研究[J]. 计算机工程与设计, 2022, 43(6): 1725-1731.
[15]  张顾瀛, 贺光华. 基于深度学习通道交换的多模态脑肿瘤图像融合的分割模型[J]. 理论数学, 2023, 13(4): 976-986.
[16]  Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N. and Liang, J. (2020) UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation. IEEE Transactions on Medical Imaging, 39, 1856-1867.
https://doi.org/10.1109/tmi.2019.2959609
[17]  Hu, J., Shen, L., Albanie, S., Sun, G. and Wu, E. (2020) Squeeze-and-Excitation Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023.
https://doi.org/10.1109/tpami.2019.2913372
[18]  Hou, Q., Zhou, D. and Feng, J. (2021). Coordinate Attention for Efficient Mobile Network Design. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 13708-13717.
https://doi.org/10.1109/cvpr46437.2021.01350
[19]  Misra, D. (2019) Mish: A Self-Regularized Non-Monotonic Neural Activation Function.
[20]  Jadon, S. (2020) A Survey of Loss Functions for Semantic Segmentation. 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Via del Mar, 27-29 October 2020, 1-7.
https://doi.org/10.1109/cibcb48159.2020.9277638
[21]  袁雪, 陈茂洲. 基于3D-Unet的sMRI图像分割研究[J]. 现代电子技术, 2023, 46(23): 71-74.
[22]  Liao, Z., Peng, H. and Liu, T. (2023) Brain Tumor Segmentation Based on Improved Swin-UNet. 2023 2nd International Conference on Artificial Intelligence and Intelligent Information Processing (AIIIP), Hangzhou, 27-29 October 2023, 222-225.
https://doi.org/10.1109/aiiip61647.2023.00048
[23]  苏赋, 方东, 王龙业, 等. 基于双解码路径DD-UNet的脑肿瘤图像分割算法[J]. 光电子·激光, 2023, 34(3): 328-336.
[24]  林嘉豪, 王瑜, 肖洪兵, 等. LRAE-Unet: 轻量级MRI脑肿瘤全自动分割网络[J]. 中国医学物理学杂志, 2024, 41(1): 43-49.
[25]  黄炜庭. 基于AI UNet的胶质瘤病变图像分割[D]: [硕士学位论文]. 兰州: 兰州大学, 2024.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133