全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ZrO2/ZnO异质结人工突触的研究及应用
Research and Application of Artificial Synapses Based on ZrO2/ZnO Heterojunction

DOI: 10.12677/airr.2025.143050, PP. 510-518

Keywords: 忆阻器,人工突触器件,神经形态计算
Memristor
, Artificial Synaptic Device, Neuromorphic Computing

Full-Text   Cite this paper   Add to My Lib

Abstract:

由忆阻器构建的类脑神经形态网络凭借其低功耗、高效的计算机架构而引起了广泛的关注,也有望打破传统的冯·诺伊曼设计的局限性。本文采用射频磁控溅射技术制备了一种基于ZrO2/ZnO异质结的人工突触器件,该器件可以实现典型的突触行为,包括短期可塑性、长期可塑性和成对脉冲促进行为。此外,该器件构建的卷积神经网络对手写数字数据集和时尚服装数据集分别具有96.6%和71.1%的识别率。这些结果表明,该设备在神经形态计算领域具有巨大的潜力,为今后建立有效的神经形态计算系统提供了一种可行的方法。
The brain-like neuromorphic network constructed by memristors has attracted wide attention due to its low power consumption and efficient computer architecture, and is also expected to break the limitations of traditional von Neumann design. In this paper, an artificial synaptic device based on ZrO2/ZnO heterojunction was prepared by RF magnetron sputtering technology. The device can achieve typical synaptic behavior, including short-term plasticity, long-term plasticity and paired pulse promotion behavior. In addition, the convolutional neural network constructed by the device has a recognition rate of 96.6% and 71.1% for handwritten digital data sets and fashion clothing data sets, respectively. These results show that the device has great potential in the field of neuromorphic computing and provides a feasible method for establishing an effective neuromorphic computing system in the future.

References

[1]  LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning. Nature, 521, 436-444.
https://doi.org/10.1038/nature14539
[2]  Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., et al. (2020) Fully Hardware-Implemented Memristor Convolutional Neural Network. Nature, 577, 641-646.
https://doi.org/10.1038/s41586-020-1942-4
[3]  Xu, Z., Li, Y., Xia, Y., Shi, C., Chen, S., Ma, C., et al. (2024) Organic Frameworks Memristor: An Emerging Candidate for Data Storage, Artificial Synapse, and Neuromorphic Device. Advanced Functional Materials, 34, Article ID: 2312658.
https://doi.org/10.1002/adfm.202312658
[4]  Zidan, M.A., Strachan, J.P. and Lu, W.D. (2018) The Future of Electronics Based on Memristive Systems. Nature Electronics, 1, 22-29.
https://doi.org/10.1038/s41928-017-0006-8
[5]  Kumar, D., Chand, U., Wen Siang, L. and Tseng, T. (2020) High-Performance TiN/AL2O3/ZnO/AL2O3/TiN Flexible RRAM Device with High Bending Condition. IEEE Transactions on Electron Devices, 67, 493-498.
https://doi.org/10.1109/ted.2019.2959883
[6]  Fan, S., Wu, E., Cao, M., Xu, T., Liu, T., Yang, L., et al. (2023) Flexible In-Ga-Zn-N-O Synaptic Transistors for Ultralow-Power Neuromorphic Computing and EEG-Based Brain-Computer Interfaces. Materials Horizons, 10, 4317-4328.
https://doi.org/10.1039/d3mh00759f
[7]  Huh, W., Lee, D. and Lee, C. (2020) Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics. Advanced Materials, 32, Article 2002092.
https://doi.org/10.1002/adma.202002092
[8]  Raifuku, I., Chao, Y., Chen, H., Lin, C., Lin, P., Shih, L., et al. (2021) Halide Perovskite for Low‐Power Consumption Neuromorphic Devices. EcoMat, 3, e12142.
https://doi.org/10.1002/eom2.12142
[9]  Lin, C., Chang, Y., Lin, H. and Lin, C. (2012) Effect of Non-Lattice Oxygen on ZrO2-Based Resistive Switching Memory. Nanoscale Research Letters, 7, Article No. 187.
https://doi.org/10.1186/1556-276x-7-187
[10]  Ismail, M., Abbas, H., Choi, C. and Kim, S. (2020) Controllable Analog Resistive Switching and Synaptic Characteristics in ZrO2/ZTO Bilayer Memristive Device for Neuromorphic Systems. Applied Surface Science, 529, Article ID: 147107.
https://doi.org/10.1016/j.apsusc.2020.147107
[11]  Lee, D., Sokolov, A.S., Ku, B., Jeon, Y., Ho Kim, D., Tae Kim, H., et al. (2021) Improved Switching and Synapse Characteristics Using PEALD SiO2 Thin Film in Cu/SiO2/ZrO2/Pt Device. Applied Surface Science, 547, Article ID: 149140.
https://doi.org/10.1016/j.apsusc.2021.149140
[12]  Liu, H., Tang, X., Liu, Q., Jiang, Y., Li, W., Guo, X., et al. (2020) Bipolar Resistive Switching Behavior and Conduction Mechanisms of Composite Nanostructured TiO2/ZrO2 Thin Film. Ceramics International, 46, 21196-21201.
https://doi.org/10.1016/j.ceramint.2020.05.201
[13]  Li, N., He, C., Wang, Q., Tang, J., Zhang, Q., Shen, C., et al. (2022) Gate-Tunable Large-Scale Flexible Monolayer MoS2 Devices for Photodetectors and Optoelectronic Synapses. Nano Research, 15, 5418-5424.
https://doi.org/10.1007/s12274-022-4122-z
[14]  Han, C., Han, X., Han, J., He, M., Peng, S., Zhang, C., et al. (2022) Light‐stimulated Synaptic Transistor with High PPF Feature for Artificial Visual Perception System Application. Advanced Functional Materials, 32, Article ID: 2113053.
https://doi.org/10.1002/adfm.202113053
[15]  Lin, W., Sun, B., Mao, S., Qin, J., Yang, Y., Liu, M., et al. (2025) Flexible Memristors for Implantable Applications. ACS Applied Nano Materials, 8, 2073-2105.
https://doi.org/10.1021/acsanm.4c06039
[16]  Park, H., Han, J., Yim, S., Shin, D.H., Park, T.W., Woo, K.S., et al. (2025) An Analysis of Components and Enhancement Strategies for Advancing Memristive Neural Networks. Advanced Materials, 37, Article ID: 2412549.
https://doi.org/10.1002/adma.202412549
[17]  Wang, K., Wang, M., Sun, B., Yang, C., Cao, Z., Wu, T., et al. (2025) An Innovative Biomimetic Technology: Memristors Mimic Human Sensation. Nano Energy, 136, Article ID: 110698.
https://doi.org/10.1016/j.nanoen.2025.110698
[18]  Zhai, H., Kong, J., Yang, J., Xu, J., Xu, Q., Sun, H., et al. (2016) Resistive Switching Properties and Failure Behaviors of (Pt, Cu)/Amorphous ZrO2/Pt Sandwich Structures. Journal of Materials Science & Technology, 32, 676-680.
https://doi.org/10.1016/j.jmst.2016.03.011
[19]  Ismail, M., Rahmani, M.K., Khan, S.A., Choi, J., Hussain, F., Batool, Z., et al. (2019) Effects of Gibbs Free Energy Difference and Oxygen Vacancies Distribution in a Bilayer ZnO/ZrO2 Structure for Applications to Bipolar Resistive Switching. Applied Surface Science, 498, Article ID: 143833.
https://doi.org/10.1016/j.apsusc.2019.143833
[20]  Kawauchi, T., Kano, S. and Fujii, M. (2019) Electrically Stimulated Synaptic Resistive Switch in Solution-Processed Silicon Nanocrystal Thin Film: Formation Mechanism of Oxygen Vacancy Filament for Synaptic Function. ACS Applied Electronic Materials, 1, 2664-2670.
https://doi.org/10.1021/acsaelm.9b00625
[21]  Liu, Q., Long, S., Wang, W., Zuo, Q., Zhang, S., Chen, J., et al. (2009) Improvement of Resistive Switching Properties in ZrO2-Based ReRAM with Implanted Ti Ions. IEEE Electron Device Letters, 30, 1335-1337.
https://doi.org/10.1109/led.2009.2032566
[22]  Payeur, A., Guerguiev, J., Zenke, F., Richards, B.A. and Naud, R. (2021) Burst-Dependent Synaptic Plasticity Can Coordinate Learning in Hierarchical Circuits. Nature Neuroscience, 24, 1010-1019.
https://doi.org/10.1038/s41593-021-00857-x
[23]  Liu, Q., Yin, L., Zhao, C., Wu, Z., Wang, J., Yu, X., et al. (2022) All-in-One Metal-Oxide Heterojunction Artificial Synapses for Visual Sensory and Neuromorphic Computing Systems. Nano Energy, 97, Article ID: 107171.
https://doi.org/10.1016/j.nanoen.2022.107171
[24]  Zhang, W., Pan, L., Yan, X., Zhao, G., Chen, H., Wang, X., et al. (2021) Hardware‐Friendly Stochastic and Adaptive Learning in Memristor Convolutional Neural Networks. Advanced Intelligent Systems, 3, Article ID: 2100041.
https://doi.org/10.1002/aisy.202100041
[25]  Zhong, W., Tang, X., Bai, L., Chen, J., Dong, H., Sun, Q., et al. (2023) A Halide Perovskite Thin Film Diode with Modulated Depletion Layers for Artificial Synapse. Journal of Alloys and Compounds, 960, Article ID: 170773.
https://doi.org/10.1016/j.jallcom.2023.170773
[26]  Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., et al. (2018) Efficient and Self-Adaptive in-Situ Learning in Multilayer Memristor Neural Networks. Nature Communications, 9, Article No. 2385.
https://doi.org/10.1038/s41467-018-04484-2
[27]  Zhang, W., Yao, P., Gao, B., Liu, Q., Wu, D., Zhang, Q., et al. (2023) Edge Learning Using a Fully Integrated Neuro-Inspired Memristor Chip. Science, 381, 1205-1211.
https://doi.org/10.1126/science.ade3483

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133