全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ANA序列下边缘频率插值密度估计的一致强相合性
Uniformly Strong Consistency of Edge Frequency Polygons for ANA Sequences

DOI: 10.12677/sa.2025.145123, PP. 28-36

Keywords: ANA序列,边缘频率插值密度估计,一致强相合性
ANA Sequences
, Edge Frequency Polygons, Uniform Strong Consistency

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文在ANA序列下,利用Rosenthal不等式,研究边缘频率插值密度估计的一致强相合性,并在适当的条件下得到其收敛速度,拓展了已有文献的研究。为验证结论的有效性,使用R软件进行数值模拟。模拟结果显示,随着样本量的增大,边缘频率插值密度估计值逐渐趋于真实密度。
In this paper, we study the uniform strong consistency and its rate of the density estimation of edge frequency polygons under asymptotically negatively associated (ANA) sequences using Rosenthal-type inequality, which extends the existing studies in the literature. To validate the theoretical conclusions, we conduct numerical simulations in R software. The results demonstrate that the proposed density estimator converges uniformly to the true density as the sample size increases.

References

[1]  Jones, M.C., Samiuddin, M., Al-Harbey, A.H. and Maatouk, T.A.H. (1998) The Edge Frequency Polygon. Biometrika, 85, 235-239.
https://doi.org/10.1093/biomet/85.1.235
[2]  Scott, D.W. (1985) Frequency Polygons: Theory and Application. Journal of the American Statistical Association, 80, 348-354.
https://doi.org/10.1080/01621459.1985.10478121
[3]  王天启. 强混合样本下边缘频率插值密度估计的渐近性质[D]: [硕士学位论文]. 南宁: 广西师范大学, 2014.
[4]  张金玲. 加权边缘频率插值密度估计[D]: [硕士学位论文]. 南宁: 广西师范大学, 2016.
[5]  何琳, 杨善朝.-混合随机域边缘频率插值的渐近方差性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 88-94.
[6]  邓新, 田春雨, 丁洋, 等. END样本下边缘频率插值密度估计的一致强相合性[J]. 湖北大学学报(自然科学版), 2023, 45(3): 390-395.
[7]  Xi, M., Wang, C. and Wang, X. (2023) Uniformly Strong Consistency and the Rates of Asymptotic Normality for the Edge Frequency Polygons. Statistics, 57, 1444-1468.
https://doi.org/10.1080/02331888.2023.2268314
[8]  Zhang, L.X. and Wang, X.Y. (1999) Convergence Rates in the Strong Laws of Asymptotically Negatively Associated Random Fields. Applied MathematicsA Journal of Chinese Universities, 14, 406-416.
https://doi.org/10.1007/s11766-999-0070-6
[9]  Wang, J.F. and Lu, F.B. (2005) Inequalities of Maximum of Partial Sums and Weak Convergence for a Class of Weak Dependent Random Variables. Acta Mathematica Sinica, English Series, 22, 693-700.
https://doi.org/10.1007/s10114-005-0601-x
[10]  Tang, X., Wang, X., Wu, Y. and Zhang, F. (2020) The Berry-Esseen Bound of a Wavelet Estimator in Non-Randomly Designed Nonparametric Regression Model Based on ANA Errors. ESAIM: Probability and Statistics, 24, 21-38.
https://doi.org/10.1051/ps/2019017
[11]  Wang, W., Huang, H., Yi Wu, and Chen, K. (2021) On the Uniform Consistency of Frequency Polygons for Ρ^-Mixing Samples. Journal of Mathematical Inequalities, 15, 1287-1298.
https://doi.org/10.7153/jmi-2021-15-86
[12]  Jin, R., Tang, X. and Chen, K. (2024) Asymptotic Properties of Conditional Value-at-Risk Estimate for Asymptotic Negatively Associated Samples. Journal of Inequalities and Applications, 2024, Article 118.
https://doi.org/10.1186/s13660-024-03191-5
[13]  孟兵, 吴群英. ANA随机变量序列加权和的完全收敛性与完全矩收敛性[J]. 应用概率统计, 2024, 40(5): 710-724.
[14]  Carbon, M., Garel, B. and Tran, L.T. (1997) Frequency Polygons for Weakly Dependent Processes. Statistics & Probability Letters, 33, 1-13.
https://doi.org/10.1016/s0167-7152(96)00104-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133