|
ANA序列下边缘频率插值密度估计的一致强相合性
|
Abstract:
本文在ANA序列下,利用Rosenthal不等式,研究边缘频率插值密度估计的一致强相合性,并在适当的条件下得到其收敛速度,拓展了已有文献的研究。为验证结论的有效性,使用R软件进行数值模拟。模拟结果显示,随着样本量的增大,边缘频率插值密度估计值逐渐趋于真实密度。
In this paper, we study the uniform strong consistency and its rate of the density estimation of edge frequency polygons under asymptotically negatively associated (ANA) sequences using Rosenthal-type inequality, which extends the existing studies in the literature. To validate the theoretical conclusions, we conduct numerical simulations in R software. The results demonstrate that the proposed density estimator converges uniformly to the true density as the sample size increases.
[1] | Jones, M.C., Samiuddin, M., Al-Harbey, A.H. and Maatouk, T.A.H. (1998) The Edge Frequency Polygon. Biometrika, 85, 235-239. https://doi.org/10.1093/biomet/85.1.235 |
[2] | Scott, D.W. (1985) Frequency Polygons: Theory and Application. Journal of the American Statistical Association, 80, 348-354. https://doi.org/10.1080/01621459.1985.10478121 |
[3] | 王天启. 强混合样本下边缘频率插值密度估计的渐近性质[D]: [硕士学位论文]. 南宁: 广西师范大学, 2014. |
[4] | 张金玲. 加权边缘频率插值密度估计[D]: [硕士学位论文]. 南宁: 广西师范大学, 2016. |
[5] | 何琳, 杨善朝.-混合随机域边缘频率插值的渐近方差性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 88-94. |
[6] | 邓新, 田春雨, 丁洋, 等. END样本下边缘频率插值密度估计的一致强相合性[J]. 湖北大学学报(自然科学版), 2023, 45(3): 390-395. |
[7] | Xi, M., Wang, C. and Wang, X. (2023) Uniformly Strong Consistency and the Rates of Asymptotic Normality for the Edge Frequency Polygons. Statistics, 57, 1444-1468. https://doi.org/10.1080/02331888.2023.2268314 |
[8] | Zhang, L.X. and Wang, X.Y. (1999) Convergence Rates in the Strong Laws of Asymptotically Negatively Associated Random Fields. Applied Mathematics—A Journal of Chinese Universities, 14, 406-416. https://doi.org/10.1007/s11766-999-0070-6 |
[9] | Wang, J.F. and Lu, F.B. (2005) Inequalities of Maximum of Partial Sums and Weak Convergence for a Class of Weak Dependent Random Variables. Acta Mathematica Sinica, English Series, 22, 693-700. https://doi.org/10.1007/s10114-005-0601-x |
[10] | Tang, X., Wang, X., Wu, Y. and Zhang, F. (2020) The Berry-Esseen Bound of a Wavelet Estimator in Non-Randomly Designed Nonparametric Regression Model Based on ANA Errors. ESAIM: Probability and Statistics, 24, 21-38. https://doi.org/10.1051/ps/2019017 |
[11] | Wang, W., Huang, H., Yi Wu, and Chen, K. (2021) On the Uniform Consistency of Frequency Polygons for Ρ^-Mixing Samples. Journal of Mathematical Inequalities, 15, 1287-1298. https://doi.org/10.7153/jmi-2021-15-86 |
[12] | Jin, R., Tang, X. and Chen, K. (2024) Asymptotic Properties of Conditional Value-at-Risk Estimate for Asymptotic Negatively Associated Samples. Journal of Inequalities and Applications, 2024, Article 118. https://doi.org/10.1186/s13660-024-03191-5 |
[13] | 孟兵, 吴群英. ANA随机变量序列加权和的完全收敛性与完全矩收敛性[J]. 应用概率统计, 2024, 40(5): 710-724. |
[14] | Carbon, M., Garel, B. and Tran, L.T. (1997) Frequency Polygons for Weakly Dependent Processes. Statistics & Probability Letters, 33, 1-13. https://doi.org/10.1016/s0167-7152(96)00104-6 |