全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类新的KdV方程的周期解
A New Class of Periodic Solutions to the KdV Equation

DOI: 10.12677/aam.2025.145229, PP. 23-28

Keywords: KdV方程,Hirota双线性形式,周期解,孤波解
KdV Equation
, Hirota Bilinear Form, Periodic Solutions, Solitary-Wave Solutions

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文根据三波法的思想,结合一类新的KdV方程的Hirota双线性形式,通过选择特定形式的试探函数,构造出该方程的孤波解与周期解,并对解中的参数赋值,利用计算机符号软件对部分解进行了数值模拟,观察解的三维波形图与动力学演化过程。
In this paper, based on the idea of the three-wave method, combined with a new class of Hirota bilinear forms of the KdV equation, we constructed the solitary-wave solution and the periodic solution of the equation by choosing a specific form of the trial function and assigning values to the parameters in the solution, and numerically simulated some of the solutions by using the computer symbolic software, observing the three-dimensional waveform plots of the solutions with the dynamics evolution process.

References

[1]  Lü, X., Tian, B. and Qi, F.H. (2012) Bell-Polynomial Construction of Bäcklund Transformations with Auxiliary Independent Variable for Some Soliton Equations with One Tau-Function. Nonlinear Analysis: Real World Applications, 13, 1130-1138.
https://doi.org/10.1016/j.nonrwa.2011.09.006
[2]  Triki, H. and Biswas, A. (2011) Soliton Solutions for a Generalized Fifth-Order KdV Equation with t-Dependent Coefficients. Waves in Random and Complex Media, 21, 151-160.
https://doi.org/10.1080/17455030.2010.539632
[3]  Johnpillai, A.G., Khalique, C.M. and Biswas, A. (2011) Exact Solutions of the mKdV Equation with Time-Dependent Coefficients. Mathematical Communications, 16, 509-518.
[4]  Triki, H., Milovic, D. and Biswas, A. (2013) Solitary Waves and Shock Waves of the KdV6 Equation. Ocean Engineering, 73, 119-125.
https://doi.org/10.1016/j.oceaneng.2013.09.001
[5]  Shen, S. (2007) Lie Symmetry Analysis and Painlevé Analysis of the New (2 + 1)-Dimensional KdV Equation. Applied MathematicsA Journal of Chinese Universities, 22, 207-212.
https://doi.org/10.1007/s11766-007-0209-2
[6]  Wang, C.J., Dai, Z.D., Mu, G. and Lin, S.Q. (2009) New Exact Periodic Solitary-Wave Solutions for New (2 + 1)-Dimensional KdV Equation. Communications in Theoretical Physics, 52, 862-864.
https://doi.org/10.1088/0253-6102/52/5/21
[7]  Li, Y. and Liu, J. (2017) New Periodic Solitary Wave Solutions for the New (2 + 1)-Dimensional Korteweg—de Vries Equation. Nonlinear Dynamics, 91, 497-504.
https://doi.org/10.1007/s11071-017-3884-4
[8]  Hao, X., Liu, Y., Li, Z. and Ma, W. (2019) Painlevé Analysis, Soliton Solutions and Lump-Type Solutions of the (3 + 1)-Dimensional Generalized KP Equation. Computers & Mathematics with Applications, 77, 724-730.
https://doi.org/10.1016/j.camwa.2018.10.007
[9]  Lü, X. and Chen, S. (2021) New General Interaction Solutions to the KPI Equation via an Optional Decoupling Condition Approach. Communications in Nonlinear Science and Numerical Simulation, 103, Article ID: 105939.
https://doi.org/10.1016/j.cnsns.2021.105939
[10]  Yang, J., Tian, S., Peng, W., Li, Z. and Zhang, T. (2019) The Lump, Lumpoff and Rouge Wave Solutions of a (3 + 1)-Dimensional Generalized Shallow Water Wave Equation. Modern Physics Letters B, 33, Article ID: 1950190.
https://doi.org/10.1142/s0217984919501902
[11]  Dai, Z., Lin, S., Fu, H. and Zeng, X. (2010) Exact Three-Wave Solutions for the KP Equation. Applied Mathematics and Computation, 216, 1599-1604.
https://doi.org/10.1016/j.amc.2010.03.013
[12]  Liu, J., Tian, Y. and Zeng, Z. (2017) New Exact Periodic Solitary-Wave Solutions for the New (3 + 1)-Dimensional Generalized Kadomtsev-Petviashvili Equation in Multi-Temperature Electron Plasmas. AIP Advances, 7, Article ID: 105013.
https://doi.org/10.1063/1.4999913

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133