|
基于双波长偏振调控的多功能超构表面
|
Abstract:
传统单一自由度的超构表面难以实现复杂的光场调控,而多功能集成器件的开发则为突破这一瓶颈提供了可能。本文提出了一种基于几何相位调控的双波长多功能太赫兹超构表面,通过亚波长单元结构的旋转角度设计,实现了跨波段偏振态与三维光场的协同操控。超表面在0.52太赫兹表现为偏振分束器,而在0.6太赫兹表现为涡旋发射器。改变超表面相位分布,进一步实现了双波长偏振相关的全息加密功能。仿真验证了器件在横向/纵向光场调控、多维度信息编码方面的灵活性,为集成光子器件、光学加密通信及智能成像系统提供了新的设计方法。
Conventional single-degree-of-freedom metasurfaces face limitations in achieving complex optical field manipulation, while the development of multifunctional integrated devices offers a breakthrough pathway. This study proposes a dual-wavelength multifunctional terahertz metasurface based on geometric phase modulation. Through rotational angle design of subwavelength unit structures, the metasurface enables synergistic control of polarization states and three-dimensional optical fields across distinct frequency bands. Specifically, the device functions as a polarization beam splitter at 0.52 THz and switches to a vortex generator mode at 0.6 THz. By reconfiguring the phase distribution, it further realizes dual-wavelength polarization-dependent holographic encryption functionality. Numerical simulations validate the device’s versatility in transverse/longitudinal optical field manipulation and multidimensional information encoding, providing novel design methodologies for integrated photonic devices, secure optical communication systems, and intelligent imaging architectures.
[1] | Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J., Capasso, F., et al. (2011) Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 334, 333-337. https://doi.org/10.1126/science.1210713 |
[2] | Huang, L., Chen, X., Mühlenbernd, H., Li, G., Bai, B., Tan, Q., et al. (2012) Dispersionless Phase Discontinuities for Controlling Light Propagation. Nano Letters, 12, 5750-5755. https://doi.org/10.1021/nl303031j |
[3] | Arbabi, A., Horie, Y., Bagheri, M. and Faraon, A. (2015) Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission. Nature Nanotechnology, 10, 937-943. https://doi.org/10.1038/nnano.2015.186 |
[4] | Zang, X., Xu, W., Gu, M., Yao, B., Chen, L., Peng, Y., et al. (2019) Polarization‐Insensitive Metalens with Extended Focal Depth and Longitudinal High‐Tolerance Imaging. Advanced Optical Materials, 8, Article ID: 1901342. https://doi.org/10.1002/adom.201901342 |
[5] | Zhao, J., Yin, L., Han, F., Wang, Y., Huang, T., Du, C., et al. (2021) Terahertz Non-Label Subwavelength Imaging with Composite Photonics-Plasmonics Structured Illumination. Optics Express, 29, Article No. 36366. https://doi.org/10.1364/oe.437544 |
[6] | Ma, A., Intaravanne, Y., Han, J., Wang, R. and Chen, X. (2020) Polarization Detection Using Light’s Orbital Angular Momentum. Advanced Optical Materials, 8, Article ID: 2000484. https://doi.org/10.1002/adom.202000484 |
[7] | Ren, Y., Guo, S., Zhu, W., Huo, P., Liu, S., Zhang, S., et al. (2022) Full‐Stokes Polarimetry for Visible Light Enabled by an All‐Dielectric Metasurface. Advanced Photonics Research, 3, Article ID: 2100373. https://doi.org/10.1002/adpr.202100373 |
[8] | Wang, T., Xie, R., Zhu, S., Gao, J., Xin, M., An, S., et al. (2019) Dual-Band High Efficiency Terahertz Meta-Devices Based on Reflective Geometric Metasurfaces. IEEE Access, 7, 58131-58138. https://doi.org/10.1109/access.2019.2912017 |
[9] | Zhang, H., Zhu, C. and Song, Z. (2024) Pancharatnam-Berry-Phase-Based Plasmonic Metasurfaces Enable Wavelength‐Selective Directional Focusing and Vortex. Advanced Photonics Research, 6, Article ID: 2400077. https://doi.org/10.1002/adpr.202400077 |
[10] | Li, H., Xu, H., Zheng, C., Liu, J., Li, J., Song, C., et al. (2022) All‐Silicon Diatomic Terahertz Metasurface with Tailorable Linear Polarization States. Advanced Optical Materials, 11, Article ID: 2201960. https://doi.org/10.1002/adom.202201960 |
[11] | Li, H., Duan, S., Zheng, C., Li, J., Xu, H., Song, C., et al. (2022) Manipulation of Longitudinally Inhomogeneous Polarization States Empowered by All‐Silicon Metasurfaces. Advanced Optical Materials, 11, Article ID: 2202461. https://doi.org/10.1002/adom.202202461 |
[12] | Shi, Y., Wan, S., Dai, C., Wang, Z., Li, Z. and Li, Z. (2024) On-Chip Meta-Optics for Engineering Arbitrary Trajectories with Longitudinal Polarization Variation. Nano Letters, 24, 2063-2070. https://doi.org/10.1021/acs.nanolett.3c04739 |
[13] | Chen, X., Chen, M., Mehmood, M.Q., Wen, D., Yue, F., Qiu, C., et al. (2015) Longitudinal Multifoci Metalens for Circularly Polarized Light. Advanced Optical Materials, 3, 1201-1206. https://doi.org/10.1002/adom.201500110 |
[14] | Mehmood, M.Q., Mei, S., Hussain, S., Huang, K., Siew, S.Y., Zhang, L., et al. (2016) Visible‐Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices. Advanced Materials, 28, 2533-2539. https://doi.org/10.1002/adma.201504532 |
[15] | Li, H., Duan, S., Zheng, C., Xu, H., Li, J., Song, C., et al. (2023) Terahertz All-Silicon Metasurfaces with Off-Axis Bifocal Characteristics for Polarization Detection. Nanophotonics, 12, 3359-3371. https://doi.org/10.1515/nanoph-2023-0277 |
[16] | Berry, M.V. (1987) The Adiabatic Phase and Pancharatnam’s Phase for Polarized Light. Journal of Modern Optics, 34, 1401-1407. https://doi.org/10.1080/09500348714551321 |
[17] | Pancharatnam, S. (1956) Generalized Theory of Interference, and Its Applications. Part I. Coherent Pencils. Proceedings of the Indian Academy of Sciences—Section A, 44, 247-262. https://doi.org/10.1007/bf03046050 |