全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钨基电致变色器件的性能增强策略研究进展
Advances in Performance Enhancement Strategies for Tungsten-Based Electrochromic Devices

DOI: 10.12677/japc.2025.142016, PP. 172-182

Keywords: 氧化钨,电致变色,提升策略,金属掺杂
Tungsten Oxide
, Electrochromism, Enhancement Strategy, Metal Doping

Full-Text   Cite this paper   Add to My Lib

Abstract:

我国优化能源结构力争达成“双碳”目标的理念为电致变色技术发展提供了新契机。电致变色器件作为一种节能型光响应器件,在隔热控温、信息显示、能源存储等诸多领域备受关注。氧化钨作为研究历史最悠久的电致变色材料之一,具有较佳的光学性能和良好的循环稳定性,为使氧化钨基电致变色智能窗从实验阶段逐步走入日常应用中,本文围绕钨基电致变色智能窗的性能评价指标,通过多篇相关文献的系统分析并总结了提升氧化钨电致变色性能的多种策略,包括不同晶体结构间的杂化,提升氧空位浓度制造缺陷、多类型金属元素掺杂。在此基础上,对钨基电致变色器件在智能窗、航空航天、屏幕显示领域的发展过程中仍存在的问题,进行进一步归纳与展望,为钨基电致变色器件的日常化应用和推动能源可持续发展做出积极贡献。
The concept of optimising China’s energy structure and striving to reach the “double carbon target” has provided a new opportunity for the development of electrochromic technology. As an energy-saving light-responsive device, electrochromic devices have attracted much attention in many fields such as thermal insulation, information display and energy storage. As one of the electrochromic materials with the longest research history, tungsten oxide has better optical properties and good cycling stability. In order to make tungsten oxide-based electrochromic smart windows gradually move from the experimental stage to daily applications, this paper focuses on the performance evaluation index of tungsten-based electrochromic smart windows, and summarizes the various strategies to enhance the electrochromic performance of tungsten oxide through systematic analyses of several related literatures, including different hybridisation between crystal structures, enhancing the oxygen vacancy concentration to create defects, and multi-type metal element doping. On this basis, the problems that still exist during the development of tungsten-based electrochromic devices in the fields of smart windows, aerospace, and screen displays are further summarized and outlooked, so as to make a positive contribution to the daily application of tungsten-based electrochromic devices and the promotion of the sustainable development of energy.

References

[1]  Chen, D., Chua, M.H., He, Q., Zhu, Q., Wang, X., Meng, H., et al. (2025) Multifunctional Electrochromic Materials and Devices Recent Advances and Future Potential. Chemical Engineering Journal, 503, Article ID: 157820.
https://doi.org/10.1016/j.cej.2024.157820
[2]  Gu, C., Jia, A., Zhang, Y. and Zhang, S.X. (2022) Emerging Electrochromic Materials and Devices for Future Displays. Chemical Reviews, 122, 14679-14721.
https://doi.org/10.1021/acs.chemrev.1c01055
[3]  Deb, S.K. (1973) Optical and Photoelectric Properties and Colour Centres in Thin Films of Tungsten Oxide. Philosophical Magazine, 27, 801-822.
https://doi.org/10.1080/14786437308227562
[4]  Chen, M., Zhang, X., Sun, W., Xiao, Y., Zhang, H., Deng, J., et al. (2024) A Dual-Responsive Smart Window Based on Inorganic All-Solid-State Electro-and Photochromic Device. Nano Energy, 123, Article ID: 109352.
https://doi.org/10.1016/j.nanoen.2024.109352
[5]  Lei, P., Wang, J., Gao, Y., Hu, C., Zhang, S., Tong, X., et al. (2023) An Electrochromic Nickel Phosphate Film for Large-Area Smart Window with Ultra-Large Optical Modulation. Nano-Micro Letters, 15, Article No. 34.
https://doi.org/10.1007/s40820-022-01002-4
[6]  Qiu, M., Zhou, F., Sun, P., Chen, X., Zhao, C. and Mai, W. (2020) Unveiling the Electrochromic Mechanism of Prussian Blue by Electronic Transition Analysis. Nano Energy, 78, Article ID: 105148.
https://doi.org/10.1016/j.nanoen.2020.105148
[7]  Gillaspie, D.T., Tenent, R.C. and Dillon, A.C. (2010) Metal-Oxide Films for Electrochromic Applications: Present Technology and Future Directions. Journal of Materials Chemistry, 20, 9585-9592.
https://doi.org/10.1039/c0jm00604a
[8]  Granqvist, C.G., Azens, A., Hjelm, A., Kullman, L., Niklasson, G.A., Rönnow, D., et al. (1998) Recent Advances in Electrochromics for Smart Windows Applications. Solar Energy, 63, 199-216.
https://doi.org/10.1016/s0038-092x(98)00074-7
[9]  Dong, D., Djaoued, H., Vienneau, G., Robichaud, J., Brown, D., Brüning, R., et al. (2020) Electrochromic and Colorimetric Properties of Anodic NiO Thin Films: Uncovering Electrochromic Mechanism of NiO. Electrochimica Acta, 335, 135648.
https://doi.org/10.1016/j.electacta.2020.135648
[10]  Zhao, H., Meng, Y., Yu, H., Li, Z. and Liu, Z. (2022) 1D/2D Co3O4/NiO Composite Film for High Electrochromic Performance. Ceramics International, 48, 32205-32212.
https://doi.org/10.1016/j.ceramint.2022.07.162
[11]  Zhao, Q., Fang, Y., Qiao, K., Wei, W., Yao, Y. and Gao, Y. (2019) Printing of WO3/ITO Nanocomposite Electrochromic Smart Windows. Solar Energy Materials and Solar Cells, 194, 95-102.
https://doi.org/10.1016/j.solmat.2019.02.002
[12]  Wang, X., Liu, B., Tang, J., Dai, G., Dong, B., Cao, L., et al. (2019) Preparation of Ni(OH)2/TiO2 Porous Film with Novel Structure and Electrochromic Property. Solar Energy Materials and Solar Cells, 191, 108-116.
https://doi.org/10.1016/j.solmat.2018.11.005
[13]  Eren, E., Karaca, G.Y., Alver, C. and Oksuz, A.U. (2016) Fast Electrochromic Response for RF-Magnetron Sputtered Electrospun V2O5 Mat. European Polymer Journal, 84, 345-354.
https://doi.org/10.1016/j.eurpolymj.2016.09.027
[14]  Kline, W.M., Lorenzini, R.G. and Sotzing, G.A. (2014) A Review of Organic Electrochromic Fabric Devices. Coloration Technology, 130, 73-80.
https://doi.org/10.1111/cote.12079
[15]  Mortimer, R.J., Dyer, A.L. and Reynolds, J.R. (2006) Electrochromic Organic and Polymeric Materials for Display Applications. Displays, 27, 2-18.
https://doi.org/10.1016/j.displa.2005.03.003
[16]  Xiong, S., Lan, J., Yin, S., Wang, Y., Kong, Z., Gong, M., et al. (2018) Enhancing the Electrochromic Properties of Polyaniline via Coordinate Bond Tethering the Polyaniline with Gold Colloids. Solar Energy Materials and Solar Cells, 177, 134-141.
https://doi.org/10.1016/j.solmat.2017.01.003
[17]  Zhang, Y., Lu, B., Dong, L., Sun, H., Hu, D., Xing, H., et al. (2016) Solvent Effects on the Synthesis, Characterization and Electrochromic Properties of Acetic Acid Modified Polyterthiophene. Electrochimica Acta, 220, 122-129.
https://doi.org/10.1016/j.electacta.2016.10.100
[18]  Bezgin Carbas, B., Ergin, N.M., Yildiz, H.B., Kivrak, A. and Demet, A.E. (2023) Electrochromic Properties of a Polydithienylpyrrole Derivative with N-Phenyl Pyrrole Subunit. Materials Chemistry and Physics, 293, Article ID: 126916.
https://doi.org/10.1016/j.matchemphys.2022.126916
[19]  Yao, W., Liu, P., Zhou, W., Duan, X., Xu, J., Yang, J., et al. (2020) Flexible Electrochromic Poly(thiophene-Furan) Film via Electrodeposition with High Stability. Chinese Journal of Polymer Science, 39, 344-354.
https://doi.org/10.1007/s10118-021-2501-7
[20]  蒋庆龙, 傅相锴, 陈祝君. 烯烃取代的紫罗精合成及全固态电致变色器件[J]. 应用化学, 2007, 24(9): 1032-1035.
[21]  Wang, T., Zhang, W., Li, T., Xia, Q., Yang, S., Weng, J., et al. (2024) Electrochromic Smart Window Based on Transition-Metal Phthalocyanine Derivatives. Inorganic Chemistry, 63, 3181-3190.
https://doi.org/10.1021/acs.inorgchem.3c04307
[22]  Maiorov, V.A. (2019) Electrochromic Glasses with Separate Regulation of Transmission of Visible Light and Near-Infrared Radiation (Review). Optics and Spectroscopy, 126, 412-430.
https://doi.org/10.1134/s0030400x19040143
[23]  Ma, B., Tang, L., Zhang, Y., Li, Z., Zhang, J. and Zhang, S. (2024) Ionic Gel Electrolytes for Electrochromic Devices. ACS Applied Materials & Interfaces, 16, 48927-48936.
https://doi.org/10.1021/acsami.4c11641
[24]  Chen, X., Dou, S., Li, W., Liu, D., Zhang, Y., Zhao, Y., et al. (2020) All Solid State Electrochromic Devices Based on the Lif Electrolyte. Chemical Communications, 56, 5018-5021.
https://doi.org/10.1039/d0cc00697a
[25]  Ding, Y., Wang, M., Mei, Z. and Diao, X. (2022) Different Ion-Based Electrolytes for Electrochromic Devices: A Review. Solar Energy Materials and Solar Cells, 248, Article ID: 112037.
https://doi.org/10.1016/j.solmat.2022.112037
[26]  Wang, J., Sheng, S., He, Z., Wang, R., Pan, Z., Zhao, H., et al. (2021) Self-Powered Flexible Electrochromic Smart Window. Nano Letters, 21, 9976-9982.
https://doi.org/10.1021/acs.nanolett.1c03438
[27]  Jiang, Y., Ma, Q. and Dong, S. (2024) Well-Matched Materials: Color Palettes-Like Multicolor Electrochromic Displays. Applied Materials Today, 37, Article ID: 102119.
https://doi.org/10.1016/j.apmt.2024.102119
[28]  Liu, Q., Dong, G., Xiao, Y., Gao, F., Wang, M., Wang, Q., et al. (2015) An All-Thin-Film Inorganic Electrochromic Device Monolithically Fabricated on Flexible PET/ITO Substrate by Magnetron Sputtering. Materials Letters, 142, 232-234.
https://doi.org/10.1016/j.matlet.2014.11.151
[29]  Faughnan, B.W., Crandall, R.S. and Heyman, P.M. (1975) Electrochromism in WO3 Amorphous Films. RCA Review, 36, 177.
[30]  Gupta, J. and Gupta, V.K. (2025) Versatility of Various Tungsten Oxide Nanostructures Towards Fostering Electrochromic State of the Art: A Review. Transition Metal Chemistry.
https://doi.org/10.1007/s11243-024-00628-0
[31]  郭俱全, 曹盛. 氧化钨基电致变色智能窗性能提升策略研究进展[J]. 工程科学学报, 2023, 45(5): 840-852.
[32]  Migas, D.B., Shaposhnikov, V.L., Rodin, V.N. and Borisenko, V.E. (2010) Tungsten Oxides. I. Effects of Oxygen Vacancies and Doping on Electronic and Optical Properties of Different Phases of WO3. Journal of Applied Physics, 108, Article ID: 093713.
https://doi.org/10.1063/1.3505688
[33]  Zhang, M., Sun, H., Guo, Y., Wang, D., Sun, D., Su, Q., et al. (2021) Synthesis of Oxygen Vacancies Implanted Ultrathin WO3-X Nanorods/Reduced Graphene Oxide Anode with Outstanding Li-Ion Storage. Journal of Materials Science, 56, 7573-7586.
https://doi.org/10.1007/s10853-020-05747-4
[34]  Mathuri, S., Margoni, M.M., Ramamurthi, K., Babu, R.R. and Ganesh, V. (2018) Hydrothermal Assisted Growth of Vertically Aligned Platelet Like Structures of WO3 Films on Transparent Conducting FTO Substrate for Electrochromic Performance. Applied Surface Science, 449, 77-91.
https://doi.org/10.1016/j.apsusc.2018.01.033
[35]  Tang, K., Zhang, Y., Shi, Y., Cui, J., Shu, X., Wang, Y., et al. (2019) Crystalline WO3 Nanowires Array Sheathed with Sputtered Amorphous Shells for Enhanced Electrochromic Performance. Applied Surface Science, 498, Article ID: 143796.
https://doi.org/10.1016/j.apsusc.2019.143796
[36]  Jo, M., Kim, K. and Ahn, H. (2022) P-doped Carbon Quantum Dot Graft-Functionalized Amorphous WO3 for Stable and Flexible Electrochromic Energy-Storage Devices. Chemical Engineering Journal, 445, Article ID: 136826.
https://doi.org/10.1016/j.cej.2022.136826
[37]  Shi, Y., Sun, M., Zhang, Y., Cui, J., Wang, Y., Shu, X., et al. (2020) Structure Modulated Amorphous/Crystalline WO3 Nanoporous Arrays with Superior Electrochromic Energy Storage Performance. Solar Energy Materials and Solar Cells, 212, Article ID: 110579.
https://doi.org/10.1016/j.solmat.2020.110579
[38]  Deb, S.K. (2008) Opportunities and Challenges in Science and Technology of WO3 for Electrochromic and Related Applications. Solar Energy Materials and Solar Cells, 92, 245-258.
https://doi.org/10.1016/j.solmat.2007.01.026
[39]  Li, Z., Liu, Z., Li, J. and Yan, W. (2022) The Electrochromic Properties of the Film Enhanced by Introducing Oxygen Vacancies to Crystalline Tungsten Oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, Article ID: 128615.
https://doi.org/10.1016/j.colsurfa.2022.128615
[40]  Peng, M., Zhang, Y., Song, L., Wu, L., Zhang, Y. and Hu, X. (2017) Electrochemical Stability Properties of Titanium-Doped WO3 Electrochromic Thin Films. Surface Engineering, 33, 305-309.
https://doi.org/10.1080/02670844.2016.1255405
[41]  Arvizu, M.A., Triana, C.A., Stefanov, B.I., Granqvist, C.G. and Niklasson, G.A. (2014) Electrochromism in Sputter-Deposited W-Ti Oxide Films: Durability Enhancement Due to Ti. Solar Energy Materials and Solar Cells, 125, 184-189.
https://doi.org/10.1016/j.solmat.2014.02.037
[42]  Porqueras, I. and Bertran, E. (2000) Efficiency of Li Doping on Electrochromic WO3 Thin Films. Thin Solid Films, 377, 129-133.
https://doi.org/10.1016/s0040-6090(00)01424-3
[43]  Li, W., Zhang, J., Zheng, Y. and Cui, Y. (2022) High Performance Electrochromic Energy Storage Devices Based on Mo-Doped Crystalline/Amorphous WO3 Core-Shell Structures. Solar Energy Materials and Solar Cells, 235, Article ID: 111488.
https://doi.org/10.1016/j.solmat.2021.111488
[44]  Nie, S., Ruan, M., Lian, Y., Zhao, L., Shi, J. and Liu, Z. (2024) Enhanced Electrochromic Properties and Amphoteric Coloration of V-Doped WO3 Supported by Electronic Structure Optimization and Oxygen Vacancy-Mediated Li+ Capture Structures. Journal of Materials Chemistry C, 12, 13572-13584.
https://doi.org/10.1039/d4tc01819b
[45]  Karuppasamy, A. (2015) Electrochromism and Photocatalysis in Dendrite Structured Ti: WO3 Thin Films Grown by Sputtering. Applied Surface Science, 359, 841-846.
https://doi.org/10.1016/j.apsusc.2015.10.020
[46]  Karaca, G.Y., Eren, E., Cogal, G.C., Uygun, E., Oksuz, L. and Uygun Oksuz, A. (2019) Enhanced Electrochromic Characteristics Induced by Au/PEDOT/Pt Microtubes in WO3 Based Electrochromic Devices. Optical Materials, 88, 472-478.
https://doi.org/10.1016/j.optmat.2018.11.052
[47]  Yin, Y., Zhu, Y., Liao, P., Yuan, X., Jia, J., Lan, C., et al. (2024) Co-sputtering Construction of Gd-Doped WO3 Nano-Stalagmites Film for Bi-Funcional Electrochromic and Energy Storage Applications. Chemical Engineering Journal, 487, Article ID: 150615.
https://doi.org/10.1016/j.cej.2024.150615
[48]  Wang, Y., Shen, G., Tang, T., Zeng, J., Sagar, R.U.R., Qi, X., et al. (2022) Construction of Doped-Rare Earth (Ce, Eu, Sm, Gd) WO3 Porous Nanofilm for Superior Electrochromic and Energy Storage Windows. Electrochimica Acta, 412, Article ID: 140099.
https://doi.org/10.1016/j.electacta.2022.140099
[49]  Zhang, S., Rao, A., Lin, K., Yao, Q., Niu, C., Wang, L., et al. (2024) Dynamic Multicolor Electrochromic Skin in High-Brightness Flexible WO3/Au Asymmetric Fabry-Perot Nanocavity Fabricated on Nylon 66 Porous Substrate. Ceramics International, 50, 41557-41568.
https://doi.org/10.1016/j.ceramint.2024.08.006
[50]  Yin, Y., Lan, C., Guo, H. and Li, C. (2016) Reactive Sputter Deposition of WO3/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices. ACS Applied Materials & Interfaces, 8, 3861-3867.
https://doi.org/10.1021/acsami.5b10665
[51]  Yin, Y., Gao, T., Xu, Q., Cao, G., Chen, Q., Zhu, H., et al. (2020) Electrochromic and Energy Storage Bifunctional Gd-Doped WO3/Ag/WO3 Films. Journal of Materials Chemistry A, 8, 10973-10982.
https://doi.org/10.1039/d0ta02079f

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133