全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

应用大气化学模式解析东亚大气氮沉降季节变化特征及其影响因素
Atmospheric Nitrogen Deposition in East Asia: Analysis of Seasonal Variations and Influencing Factors Using GEOS-Chem Model

DOI: 10.12677/ccrl.2025.143036, PP. 349-359

Keywords: GEOS-Chem,氮沉降,氮排放,季风
GEOS-Chem
, Nitrogen Deposition, Nitrogen Emissions, Monsoon

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究基于GEOS-Chem三维大气化学传输模式,模拟分析了2016~2018年东亚地区活性氮(Nr)沉降与排放的时空分布情况,以及其在季风降水的影响下的季节变化特征。沉降排放比(D/E)分析表明,中国与印度D/E较低,是东亚地区主要的活性氮排放源。本研究进一步发现,不同国家和地区活性氮排放和季风降水不同位相的季节变化,导致其活性氮沉降的季节变化也不同。中国活性氮排放与东亚季风降水的季节变化基本同位相,各类活性氮沉降均呈“夏高冬低”的特征。印度地区则因活性氮排放和南亚季风降水的季节变化位相不同,导致除氧化氮干沉降外,其他各类氮沉降的季节变化主要受南亚季风强降水的影响,与对应排放季节变化存在较大差异。而东南亚地区降水受季风影响较弱,其沉降的季节变化主要取决于对应排放的季节变化。本研究解析了季风影响下活性氮排放对其沉降季节变化的影响,有助于制定更为科学有效的区域减排政策。
This study uses the GEOS-Chem model to investigate the spatiotemporal distribution and seasonal mechanisms of reactive nitrogen (Nr) deposition and emissions across East Asia during 2016~2018. Analysis of deposition-to-emission ratios (D/E) shows that China and India have lower D/E ratios and are the main sources of active nitrogen emissions in East Asia. We find that the regional seasonal patterns of nitrogen deposition are shaped by phase relationships between emissions and monsoon precipitation. In China, synchronized peaks of the emissions and East Asian monsoon rainfall drive coherent “summer-high, winter-low” deposition patterns for all Nr deposition species. In contrast, India exhibits a phase mismatch: except for the dry deposition of nitrogen oxide, other Nr deposition species are mainly influenced by the heavy precipitation of the South Asian Monsoon, with a significant difference of the seasonal variation of emissions. While the Southeast Asia, with weaker monsoon influence to the precipitation, shows deposition seasonality primarily governed by local emission cycles. This study resolves the dual control of emissions and monsoons on Nr deposition, providing a framework for optimizing regional air quality policies.

References

[1]  Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., et al. (2013) The Global Nitrogen Cycle in the Twenty-First Century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, Article 20130164.
https://doi.org/10.1098/rstb.2013.0164
[2]  Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., et al. (2004) Nitrogen Cycles: Past, Present, and Future. Biogeochemistry, 70, 153-226.
https://doi.org/10.1007/s10533-004-0370-0
[3]  Duce, R.A., LaRoche, J., Altieri, K., Arrigo, K.R., Baker, A.R., Capone, D.G., et al. (2008) Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean. Science, 320, 893-897.
https://doi.org/10.1126/science.1150369
[4]  Liu, L. and Greaver, T.L. (2009) A Review of Nitrogen Enrichment Effects on Three Biogenic GHGs: The CO2 Sink May Be Largely Offset by Stimulated N2O and CH4 Emission. Ecology Letters, 12, 1103-1117.
https://doi.org/10.1111/j.1461-0248.2009.01351.x
[5]  Zaehle, S., Ciais, P., Friend, A.D. and Prieur, V. (2011) Carbon Benefits of Anthropogenic Reactive Nitrogen Offset by Nitrous Oxide Emissions. Nature Geoscience, 4, 601-605.
https://doi.org/10.1038/ngeo1207
[6]  Bouwman, A.F., Van Vuuren, D.P., Derwent, R.G. and Posch, M. (2002) A Global Analysis of Acidification and Eutrophication of Terrestrial Ecosystems. Water, Air, and Soil Pollution, 141, 349-382.
https://doi.org/10.1023/a:1021398008726
[7]  Stevens, C.J., Dise, N.B., Mountford, J.O. and Gowing, D.J. (2004) Impact of Nitrogen Deposition on the Species Richness of Grasslands. Science, 303, 1876-1879.
https://doi.org/10.1126/science.1094678
[8]  Bowman, W.D., Cleveland, C.C., Halada, Ĺ., Hreško, J. and Baron, J.S. (2008) Negative Impact of Nitrogen Deposition on Soil Buffering Capacity. Nature Geoscience, 1, 767-770.
https://doi.org/10.1038/ngeo339
[9]  Clark, C.M. and Tilman, D. (2008) Loss of Plant Species after Chronic Low-Level Nitrogen Deposition to Prairie Grasslands. Nature, 451, 712-715.
https://doi.org/10.1038/nature06503
[10]  Richter, A., Burrows, J.P., Nüß, H., Granier, C. and Niemeier, U. (2005) Increase in Tropospheric Nitrogen Dioxide over China Observed from Space. Nature, 437, 129-132.
https://doi.org/10.1038/nature04092
[11]  Dentener, F., Drevet, J., Lamarque, J.F., Bey, I., Eickhout, B., Fiore, A.M., et al. (2006) Nitrogen and Sulfur Deposition on Regional and global scales: A Multimodel Evaluation. Global Biogeochemical Cycles, 20, 1-21.
https://doi.org/10.1029/2005gb002672
[12]  Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., et al. (2008) Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320, 889-892.
https://doi.org/10.1126/science.1136674
[13]  Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., et al. (2013) Enhanced Nitrogen Deposition over China. Nature, 494, 459-462.
https://doi.org/10.1038/nature11917
[14]  Vet, R., Artz, R.S., Carou, S., Shaw, M., Ro, C., Aas, W., et al. (2014) A Global Assessment of Precipitation Chemistry and Deposition of Sulfur, Nitrogen, Sea Salt, Base Cations, Organic Acids, Acidity and pH, and Phosphorus. Atmospheric Environment, 93, 3-100.
https://doi.org/10.1016/j.atmosenv.2013.10.060
[15]  Liu, L., Xu, W., Lu, X., Zhong, B., Guo, Y., Lu, X., et al. (2022) Exploring Global Changes in Agricultural Ammonia Emissions and Their Contribution to Nitrogen Deposition since 1980. Proceedings of the National Academy of Sciences, 119, e2121998119.
https://doi.org/10.1073/pnas.2121998119
[16]  Liu, L., Zhang, X., Xu, W., Liu, X., Zhang, Y., Li, Y., et al. (2020) Fall of Oxidized While Rise of Reduced Reactive Nitrogen Deposition in China. Journal of Cleaner Production, 272, Article 122875.
https://doi.org/10.1016/j.jclepro.2020.122875
[17]  Xu, M., Qin, Z. and Zhang, S. (2021) Integrated Assessment of Cleaning Air Policy in China: A Case Study for Beijing-Tianjin-Hebei Region. Journal of Cleaner Production, 296, Article 126596.
https://doi.org/10.1016/j.jclepro.2021.126596
[18]  Zhang, X., Wu, Y., Liu, X., Reis, S., Jin, J., Dragosits, U., et al. (2017) Ammonia Emissions May Be Substantially Underestimated in China. Environmental Science & Technology, 51, 12089-12096.
https://doi.org/10.1021/acs.est.7b02171
[19]  Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., et al. (2018) Trends in China’s Anthropogenic Emissions since 2010 as the Consequence of Clean Air Actions. Atmospheric Chemistry and Physics, 18, 14095-14111.
https://doi.org/10.5194/acp-18-14095-2018
[20]  黄静文, 刘磊, 颜晓元, 等. 我国自然生态系统氮沉降临界负荷评估[J]. 环境科学, 2023, 44(6): 3321-3328.
[21]  Zhao, Y., Zhang, L., Pan, Y., Wang, Y., Paulot, F. and Henze, D.K. (2015) Atmospheric Nitrogen Deposition to the Northwestern Pacific: Seasonal Variation and Source Attribution. Atmospheric Chemistry and Physics, 15, 10905-10924.
https://doi.org/10.5194/acp-15-10905-2015
[22]  Wen, Z., Xu, W., Li, Q., Han, M., Tang, A., Zhang, Y., et al. (2020) Changes of Nitrogen Deposition in China from 1980 to 2018. Environment International, 144, Article 106022.
https://doi.org/10.1016/j.envint.2020.106022
[23]  Wang, Q., Zou, J., Liu, Y., Li, J., Liu, X., Zhang, H., et al. (2024) Impacts of Farming Activities on Nitrogen Degradability under a Temperate Continental Monsoon Climate. Agronomy, 14, Article 1094.
https://doi.org/10.3390/agronomy14061094
[24]  Zhang, J., Zhang, G.S., Bi, Y.F. and Liu, S.M. (2011) Nitrogen Species in Rainwater and Aerosols of the Yellow and East China Seas: Effects of the East Asian Monsoon and Anthropogenic Emissions and Relevance for the NW Pacific Ocean. Global Biogeochemical Cycles, 25, 1-14.
https://doi.org/10.1029/2010gb003896
[25]  Cui, J., Zhou, J., Peng, Y., He, Y., Yang, H. and Mao, J. (2014) Atmospheric Wet Deposition of Nitrogen and Sulfur to a Typical Red Soil Agroecosystem in Southeast China during the Ten-Year Monsoon Seasons (2003-2012). Atmospheric Environment, 82, 121-129.
https://doi.org/10.1016/j.atmosenv.2013.10.023
[26]  The GEOS-Chem Website.
http://geos-chem.org
[27]  Zhao, Y., Zhang, L., Chen, Y., Liu, X., Xu, W., Pan, Y., et al. (2017) Atmospheric Nitrogen Deposition to China: A Model Analysis on Nitrogen Budget and Critical Load Exceedance. Atmospheric Environment, 153, 32-40.
https://doi.org/10.1016/j.atmosenv.2017.01.018
[28]  Zhang, L., Jacob, D.J., Knipping, E.M., Kumar, N., Munger, J.W., Carouge, C.C., et al. (2012) Nitrogen Deposition to the United States: Distribution, Sources, and Processes. Atmospheric Chemistry and Physics, 12, 4539-4554.
https://doi.org/10.5194/acp-12-4539-2012
[29]  Zhao, Y., Zhang, L., Tai, A.P.K., Chen, Y. and Pan, Y. (2017) Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition in the Northern Hemisphere. Atmospheric Chemistry and Physics, 17, 9781-9796.
https://doi.org/10.5194/acp-17-9781-2017
[30]  Index of /ExtData/GEOS_0.5x0.625_AS/MERRA2.
http://geoschemdata.wustl.edu/ExtData/GEOS_0.5x0.625_AS/MERRA2/
[31]  Park, R.J., Jacob, D.J., Field, B.D., Yantosca, R.M. and Chin, M. (2004) Natural and Transboundary Pollution Influences on Sulfate-Nitrate-Ammonium Aerosols in the United States: Implications for Policy. Journal of Geophysical Research: Atmospheres, 109, D15204.
https://doi.org/10.1029/2003jd004473
[32]  Mao, J., Jacob, D.J., Evans, M.J., Olson, J.R., Ren, X., Brune, W.H., et al. (2010) Chemistry of Hydrogen Oxide Radicals (hox) in the Arctic Troposphere in Spring. Atmospheric Chemistry and Physics, 10, 5823-5838.
https://doi.org/10.5194/acp-10-5823-2010
[33]  Fountoukis, C. and Nenes, A. (2007) ISORROPIA II: A Computationally Efficient Thermodynamic Equilibrium Model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl-H2O Aerosols. Atmospheric Chemistry and Physics, 7, 4639-4659.
https://doi.org/10.5194/acp-7-4639-2007
[34]  Liu, H., Jacob, D.J., Bey, I. and Yantosca, R.M. (2001) Constraints from 210Pb and 7Be on Wet Deposition and Transport in a Global Three-Dimensional Chemical Tracer Model Driven by Assimilated Meteorological Fields. Journal of Geophysical Research: Atmospheres, 106, 12109-12128.
https://doi.org/10.1029/2000jd900839
[35]  Mari, C., Jacob, D.J. and Bechtold, P. (2000) Transport and Scavenging of Soluble Gases in a Deep Convective Cloud. Journal of Geophysical Research: Atmospheres, 105, 22255-22267.
https://doi.org/10.1029/2000jd900211
[36]  Amos, H.M., Jacob, D.J., Holmes, C.D., Fisher, J.A., Wang, Q., Yantosca, R.M., et al. (2012) Gas-Particle Partitioning of Atmospheric Hg (II) and Its Effect on Global Mercury Deposition. Atmospheric Chemistry and Physics, 12, 591-603.
https://doi.org/10.5194/acp-12-591-2012
[37]  Wesely, M.L. (1989) Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale Numerical Models. Atmospheric Environment, 23, 1293-1304.
https://doi.org/10.1016/0004-6981(89)90153-4
[38]  Zhang, L. (2001) A Size-Segregated Particle Dry Deposition Scheme for an Atmospheric Aerosol Module. Atmospheric Environment, 35, 549-560.
https://doi.org/10.1016/s1352-2310(00)00326-5
[39]  ESGF MetaGrid.
https://esgf-node.llnl.gov/search/input4mips/
[40]  MEICModel.
http://meicmodel.org
[41]  Hoesly, R.M., Smith, S.J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., et al. (2018) Historical (1750–2014) Anthropogenic Emissions of Reactive Gases and Aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11, 369-408.
https://doi.org/10.5194/gmd-11-369-2018
[42]  Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., et al. (2017) Anthropogenic Emission Inventories in China: A Review. National Science Review, 4, 834-866.
https://doi.org/10.1093/nsr/nwx150
[43]  Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Josep, C., et al. (2014) Carbon and Other Biogeochemical Cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[44]  Zhao, Y., Xi, M., Zhang, Q., Dong, Z., Ma, M., Zhou, K., et al. (2022) Decline in Bulk Deposition of Air Pollutants in China Lags behind Reductions in Emissions. Nature Geoscience, 15, 190-195.
https://doi.org/10.1038/s41561-022-00899-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133