|
热带岛屿多尺度降水系统的积云对流参数化方案模拟性能评估——以海南岛为例
|
Abstract:
降水作为地球水循环与能量循环的核心环节,对全球气候演变、水文过程及人类社会活动具有深远影响。热带地区贡献了全球约三分之二的降水量,而海南岛作为典型热带海岛,其独特的下垫面条件和复杂的海陆相互作用导致降水呈现多尺度、多形态特征,对数值模式中积云对流参数化方案的适应性提出了更高挑战。本研究基于WRF模式(V4.2),选取7种积云对流参数化方案(包括Kain-Fritsch、BMJ、Modified Tiedtke等),结合ERA5再分析资料、地面观测站数据、CMPAS融合降水产品及GSMaP卫星反演数据,对海南岛2017年雨季13类典型降水案例开展高分辨率(5 km)模拟,并通过相关系数(R)、平均绝对误差(MAE)和Kling-Gupta效率系数(KGE)等多指标评估方案性能。结果表明:(1) Modified Tiedtke(cu6)和New Tiedtke (cu16)方案在热带海岛环境表现最优,尤其是Modified Tiedtke (cu6)在台风活跃期(9~10月)相关系数高达0.913,全案例平均达0.41 ± 0.26;(2) “灰区”分辨率(4~10km)下综合季节性和降水类型差异,提出分时段优化策略:传统的Kain-Fritsch方案(cu1)和改进的Kain-Fritsch方案(cu10)适合模拟降水增长过程,但需要注意其在时间和降水量上的系统性偏差;Modified Tiedtke方案(cu6)和BMJ方案(cu2)适合模拟弱降水过程,并且Modified Tiedtke方案(cu6)在强降水情况下表现也较好;Multi-scale Kain-Fritsch方案(cu11)、KSAS方案(cu14)和新版Tiedtke方案(cu16)则展现出较好的综合性能。(3) Multi-scale Kain-Fritsch方案(cu11)在降水中心位置、降水空间分布和虚假降水控制上表现出优异性能。(4)综合季节性和降水类型差异,提出分时段优化策略:台风季节和季风转换前期选择Modified Tiedtke方案(cu6)或新版Tiedtke方案(cu16),雨季盛期采用Kain-Fritsch方案(cu1)和Modified Kain-Fritsch方案(cu10)的集合平均。研究结果为热带海岛地区降水模拟的参数化方案优化提供了关键科学依据。
Precipitation plays a pivotal role in the global water and energy cycles, significantly impacting climate evolution, hydrological processes, and human activities. The tropics contribute approximately two-thirds of global precipitation, and as a representative tropical island, Hainan Island exhibits distinct precipitation characteristics due to its unique underlying surface conditions and complex land-sea interactions, posing significant challenges to the applicability of cumulus convection parameterization schemes in numerical models. This study employs the Weather Research and Forecasting (WRF) model (V4.2) to simulate 13 typical precipitation cases during the 2017 rainy season at a high resolution (5 km), using seven cumulus parameterization schemes, including Kain-Fritsch, BMJ, Modified Tiedtke, etc. The simulation results are evaluated against ERA5 reanalysis data, ground-based observations, CMPAS merged precipitation products, and GSMaP satellite-derived data using multiple metrics, including correlation coefficient (R), mean absolute error (MAE), and Kling-Gupta efficiency (KGE). The results indicate that (1) the Modified Tiedtke (cu6) and New Tiedtke (cu16) schemes perform best in the tropical island environment, with Modified Tiedtke (cu6) achieving a correlation coefficient of up to 0.913 during the typhoon-active period (September–October) and an overall case-average of 0.41 ± 0.26; (2)
[1] | Wang, B., Liu, J., Kim, H., Webster, P.J. and Yim, S. (2012) Recent Change of the Global Monsoon Precipitation (1979-2008). Climate Dynamics, 39, 1123-1135. https://doi.org/10.1007/s00382-011-1266-z |
[2] | 张强, 张红丽, 张良, 岳平. 论我国夏季风影响过渡区及其陆-气相互作用问题[J]. 地球科学进展, 2017, 32(10): 1009-1019. |
[3] | Grell, G. and Freitas, S. (2013) A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmospheric Chemistry and Physics Discussions, 14, 5233-5250. https://doi.org/10.5194/acpd-13-23845-2013 |
[4] | 陈颖, 杨显玉, 吕雅琼, 文军, 朱家宁. 对流解析与对流参数化方案模拟青藏高原夏季降水对比研究[J]. 高原气象, 2023, 42(6): 1429-1443. |
[5] | 黄安宁, 张耀存, 朱坚. 中国夏季不同强度降水模拟对不同积云对流参数化方案的敏感性研究[J]. 大气科学, 2009, 33(6): 1212-1224. |
[6] | 谭红建, 蔡榕硕, 齐庆华. 积云对流参数化方案模拟我国东南沿海及台湾海峡地区降水的适用性[J]. 应用海洋学学报, 2020, 39(1): 122-129. |
[7] | 侯瑞钦, 程麟生. 积云对流参数化方案对梅雨锋暴雨过程模拟的影响[J]. 气象科技, 2007, 35(4): 458-463. |
[8] | 李响. WRF模式中积云对流参数化方案对西北太平洋台风路径与强度模拟的影响[J]. 中国科学: 地球科学, 2012, 42(12): 1966-1978. |
[9] | 马艳, 顾瑜, 陈尚, 董海鹰. WRF中不同积云对流参数化方案对青岛降水预报影响的对比分析[J]. 气象与环境科学, 2017, 40(4): 19-26. |
[10] | 胡浩楠, 刘引鸽. 基于WRF模式的渭河上游夏季降水及气温模拟[J]. 水土保持研究, 2023, 30(4): 256-264. |
[11] | 黄巧明. 对比分析海南热带积雨云带的降水特征[J]. 气候变化研究快报, 2023, 12(1): 120-135. |
[12] | 黄巧明, 邢峰华, 黄彦彬. 海南热带积雨云带降水特征分析[J]. 气候变化研究快报, 2021, 10(1): 48-60. |
[13] | Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020) The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049. https://doi.org/10.1002/qj.3803 |
[14] | 孙帅, 师春香, 潘旸, 谷军霞, 白磊, 苏传程, 韩帅, 孙金森. 中国区域三源融合降水产品的改进效果评估[J]. 水文, 2020, 40(6): 10-15. |
[15] | Ushio, T., Sasashige, K., Kubota, T., Shige, S., Okamoto, K., Aonashi, K., et al. (2009) A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data. Journal of the Meteorological Society of Japan. Ser. II, 87, 137-151. https://doi.org/10.2151/jmsj.87a.137 |
[16] | 海南省气象局. 盘点海南省2017年十大天气气候事件[EB/OL]. https://www.hainan.gov.cn/hainan/tingju/201802/1f510beeed574a5ea2aa2b587b35d1f5.shtml, 2018-02-27. |
[17] | Zhang, C., Wang, Y. and Hamilton, K. (2011) Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Monthly Weather Review, 139, 3489-3513. https://doi.org/10.1175/mwr-d-10-05091.1 |
[18] | Kain, J.S. (2004) The Kain-Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:tkcpau>2.0.co;2 |
[19] | Bechtold, P., Semane, N., Lopez, P., Chaboureau, J., Beljaars, A. and Bormann, N. (2014) Representing Equilibrium and Nonequilibrium Convection in Large-Scale Models. Journal of the Atmospheric Sciences, 71, 734-753. https://doi.org/10.1175/jas-d-13-0163.1 |