全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于FDTD的表面增强拉曼散射纳米星型结构数值计算研究
Numerical Calculation of Surface-Enhanced Raman Scattering Nanostar Structures Based on FDTD

DOI: 10.12677/nat.2025.152003, PP. 15-21

Keywords: FDTD,纳米星,表面增强拉曼
FDTD
, Nanostar, Surface Enhanced Raman

Full-Text   Cite this paper   Add to My Lib

Abstract:

复杂形状的纳米星一直是认识等离子体现象的主要障碍。本文通过时域有限差分(FDTD)方法,对纳米星形结构进行模拟分析。我们对不同几何参数(如粒子直径、金星分支尖角的粗细和金星分支的数量)下的光谱响应进行了数值研究,以阐明纳米星的光学特性与几何结构之间的关系。另外,还在金纳米星的基础上耦合了银,发现可以通过调整银的不同含量来调谐纳米星的消光峰,而且能提升纳米粒子的电场增强。我们的结果为确定选择不同激发波长的SERS应用中纳米星的几何形状提供了理论指导。这项工作为开发具有宽吸收光谱增强电磁场的等离子金属晶体结构铺平了道路。此外,这项研究还为医学成像和农药残留检测提供了一种有效的SERS基底。
The complex shape of nanostars has been a major obstacle to understanding plasma phenomena. In this paper, the finite difference Time domain (FDTD) method is used to simulate and analyze the nanostar structure. Numerical studies of spectral responses under different geometric parameters such as particle diameter, the thickness of Venusian branches, and the number of Venusian branches are carried out to clarify the relationship between the optical properties of nanostars and their geometric structure. In addition, silver is coupled to the gold nanostars, and it is found that the extinction peak of the nanostars can be tuned by adjusting the different content of silver, and the electric field enhancement of the nanoparticles can be improved. Our results provide theoretical guidance for determining the geometry of nanostars in SERS applications where different excitation wavelengths are selected. This work paves the way for the development of plasma metallic structures with a wide absorption spectrum enhanced electromagnetic field. In addition, this study provides an effective SERS substrate for medical imaging and pesticide residue detection.

References

[1]  Chatterjee, H., Rahman, D.S., Sengupta, M. and Ghosh, S.K. (2018) Gold Nanostars in Plasmonic Photothermal Therapy: The Role of Tip Heads in the Thermoplasmonic Landscape. The Journal of Physical Chemistry C, 122, 13082-13094.
https://doi.org/10.1021/acs.jpcc.8b00388
[2]  Liu, Y., Yuan, H., Kersey, F., Register, J., Parrott, M. and Vo-Dinh, T. (2015) Plasmonic Gold Nanostars for Multi-Modality Sensing and Diagnostics. Sensors, 15, 3706-3720.
https://doi.org/10.3390/s150203706
[3]  Liu, Y., Yuan, H., Fales, A.M., Register, J.K. and Vo-Dinh, T. (2015) Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy. Frontiers in Chemistry, 3, Article 51.
https://doi.org/10.3389/fchem.2015.00051
[4]  Dondapati, S.K., Sau, T.K., Hrelescu, C., Klar, T.A., Stefani, F.D. and Feldmann, J. (2010) Label-Free Biosensing Based on Single Gold Nanostars as Plasmonic Transducers. ACS Nano, 4, 6318-6322.
https://doi.org/10.1021/nn100760f
[5]  Hrelescu, C., Sau, T.K., Rogach, A.L., Jäckel, F. and Feldmann, J. (2009) Single Gold Nanostars Enhance Raman Scattering. Applied Physics Letters, 94, Article 153113.
https://doi.org/10.1063/1.3119642
[6]  Hao, F., Nehl, C.L., Hafner, J.H. and Nordlander, P. (2007) Plasmon Resonances of a Gold Nanostar. Nano Letters, 7, 729-732.
https://doi.org/10.1021/nl062969c
[7]  Li, C., Duan, S., Wen, B., Li, S., Kathiresan, M., Xie, L., et al. (2020) Observation of Inhomogeneous Plasmonic Field Distribution in a Nanocavity. Nature Nanotechnology, 15, 922-926.
https://doi.org/10.1038/s41565-020-0753-y
[8]  Le Ru, E.C., Blackie, E., Meyer, M. and Etchegoin, P.G. (2007) Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. The Journal of Physical Chemistry C, 111, 13794-13803.
https://doi.org/10.1021/jp0687908
[9]  Li, J., Zhang, G., Wang, J., Maksymov, I.S., Greentree, A.D., Hu, J., et al. (2018) Facile One-Pot Synthesis of Nanodot-Decorated Gold-Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity. ACS Applied Materials & Interfaces, 10, 32526-32535.
https://doi.org/10.1021/acsami.8b10112
[10]  Pedireddy, S., Li, A., Bosman, M., Phang, I.Y., Li, S. and Ling, X.Y. (2013) Synthesis of Spiky Ag-Au Octahedral Nanoparticles and Their Tunable Optical Properties. The Journal of Physical Chemistry C, 117, 16640-16649.
https://doi.org/10.1021/jp4063077
[11]  Sun, Y. and Xia, Y. (2004) Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. Journal of the American Chemical Society, 126, 3892-3901.
https://doi.org/10.1021/ja039734c

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133