|
Pure Mathematics 2025
带有正则单模的Nakayama代数的计数
|
Abstract:
有限生成投射模范畴的正合结构的分类与2正则单模有关。基于Nakayama代数上的正则单模的代数性质与Dyck路的组合结构的对应,计算了带有k个1正则单模(或k个2正则单模)的(n + 1)-LNakayama代数和拟遗传n-CNakayama代数的个数。
The classification of exact structures in the category of finitely generated projective modules for finite dimensional algebras were reduced to the classification of 2-regular simple modules. By the result of relations between regular simple modules over Nakayama algebras and certain combinatorial structures of Dyck paths, the number of (n + 1)-LNakayama algebras and quasi-hereditary n-CNakayama algebras that have exactly k 1-regular simple modules (respectively k 2-regular simple modules) was calculated.
[1] | Enomoto, H. (2018) Classifications of Exact Structures and Cohen-Macaulay-Finite Algebras. Advances in Mathematics, 335, 838-877. https://doi.org/10.1016/j.aim.2018.07.022 |
[2] | Marczinzik, R., Rubey, M. and Stump, C. (2021) A Combinatorial Classification of 2-Regular Simple Modules for Nakayama Algebras. Journal of Pure and Applied Algebra, 225, Article 106520. https://doi.org/10.1016/j.jpaa.2020.106520 |
[3] | Assem, I., Skowronski, A. and Simson, D. (2006) Elements of the Representation Theory of Associative Algebras. Cambridge University Press. https://doi.org/10.1017/cbo9780511614309 |
[4] | Fuller, K.R. (1968) Generalized Uniserial Rings and Their Kupisch Series. Mathematische Zeitschrift, 106, 248-260. https://doi.org/10.1007/bf01110273 |
[5] | Gessel, I.M. (2016) Lagrange Inversion. Journal of Combinatorial Theory, Series A, 144, 212-249. https://doi.org/10.1016/j.jcta.2016.06.018 |
[6] | Bernhart, F.R. (1999) Catalan, Motzkin, and Riordan Numbers. Discrete Mathematics, 204, 73-112. https://doi.org/10.1016/s0012-365x(99)00054-0 |
[7] | Uematsu, M. and Yamagata, K. (1990) On Serial Quasi-Hereditary Rings. Hokkaido Mathematical Journal, 19, 165-174. https://doi.org/10.14492/hokmj/1381517167 |
[8] | Klass, M.J. (1976) A Generalization of Burnside’s Combinatorial Lemma. Journal of Combinatorial Theory, Series A, 20, 273-278. https://doi.org/10.1016/0097-3165(76)90021-2 |
[9] | Bergeron, F., Labelle, G. and Leroux, P. (1997) Combinatorial Species and Tree-Like Structures. Cambridge University Press. https://doi.org/10.1017/cbo9781107325913 |