全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带有正则单模的Nakayama代数的计数
Counting Nakayama Algebras with Regular Simple Modules

DOI: 10.12677/pm.2025.154128, PP. 257-265

Keywords: Nakayama代数,Dyck路,正则单模
Nakayama Algebras
, Dyck Paths, Regular Simple Modules

Full-Text   Cite this paper   Add to My Lib

Abstract:

有限生成投射模范畴的正合结构的分类与2正则单模有关。基于Nakayama代数上的正则单模的代数性质与Dyck路的组合结构的对应,计算了带有k个1正则单模(或k个2正则单模)的(n + 1)-LNakayama代数和拟遗传n-CNakayama代数的个数。
The classification of exact structures in the category of finitely generated projective modules for finite dimensional algebras were reduced to the classification of 2-regular simple modules. By the result of relations between regular simple modules over Nakayama algebras and certain combinatorial structures of Dyck paths, the number of (n + 1)-LNakayama algebras and quasi-hereditary n-CNakayama algebras that have exactly k 1-regular simple modules (respectively k 2-regular simple modules) was calculated.

References

[1]  Enomoto, H. (2018) Classifications of Exact Structures and Cohen-Macaulay-Finite Algebras. Advances in Mathematics, 335, 838-877.
https://doi.org/10.1016/j.aim.2018.07.022
[2]  Marczinzik, R., Rubey, M. and Stump, C. (2021) A Combinatorial Classification of 2-Regular Simple Modules for Nakayama Algebras. Journal of Pure and Applied Algebra, 225, Article 106520.
https://doi.org/10.1016/j.jpaa.2020.106520
[3]  Assem, I., Skowronski, A. and Simson, D. (2006) Elements of the Representation Theory of Associative Algebras. Cambridge University Press.
https://doi.org/10.1017/cbo9780511614309
[4]  Fuller, K.R. (1968) Generalized Uniserial Rings and Their Kupisch Series. Mathematische Zeitschrift, 106, 248-260.
https://doi.org/10.1007/bf01110273
[5]  Gessel, I.M. (2016) Lagrange Inversion. Journal of Combinatorial Theory, Series A, 144, 212-249.
https://doi.org/10.1016/j.jcta.2016.06.018
[6]  Bernhart, F.R. (1999) Catalan, Motzkin, and Riordan Numbers. Discrete Mathematics, 204, 73-112.
https://doi.org/10.1016/s0012-365x(99)00054-0
[7]  Uematsu, M. and Yamagata, K. (1990) On Serial Quasi-Hereditary Rings. Hokkaido Mathematical Journal, 19, 165-174.
https://doi.org/10.14492/hokmj/1381517167
[8]  Klass, M.J. (1976) A Generalization of Burnside’s Combinatorial Lemma. Journal of Combinatorial Theory, Series A, 20, 273-278.
https://doi.org/10.1016/0097-3165(76)90021-2
[9]  Bergeron, F., Labelle, G. and Leroux, P. (1997) Combinatorial Species and Tree-Like Structures. Cambridge University Press.
https://doi.org/10.1017/cbo9781107325913

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133