全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ELM-GBDT组合模型的生鲜农产品线上需求趋势预测研究
Forecasting Online Demand Trends for Fresh Agricultural Products Using an ELM-GBDT Ensemble Model

DOI: 10.12677/mm.2025.155126, PP. 38-51

Keywords: ERNIE情感分析,特征工程,机器学习,生鲜产品,需求预测
ERNIE Sentiment Analysis
, Feature Engineering, Machine Learning, Fresh Products, Demand Forecasting

Full-Text   Cite this paper   Add to My Lib

Abstract:

在生鲜农产品销售渠道中,由于生鲜农产品的特殊性,需要对于市场信息有较强的感知能力以协调供应链,促进生鲜农产品供应链的高效稳定运行。而供应链特别是上游在市场实时信息对接方面存在明显不足问题。为此,本文借助面向全平台公开的评论数据,以提高供应链信息传递的实时性与准确性,利用ERNIE模型进行评论文本的情感分析,获取用户情感特征集,并依据现有数据进行特征工程,保留提取6个特征后,通过PSO优化获取权重组合ELM-GBDT预测模型进行需求趋势预测。研究结果表明,与单一模型相比,组合预测模型显著提高了对生鲜农产品销量需求趋势的预测准确度,同时发现生鲜农产品需求趋势变化存在一个相对稳定的周期,为生鲜农产品供应链采购决策、库存优化决策等提供有价值的参考。
In the sales channels of fresh agricultural products, due to the unique nature of these products, a strong market information perception capability is required to coordinate the supply chain and promote its efficient and stable operation. However, significant deficiencies exist in the real-time integration of market information, particularly in the upstream segments of the supply chain. To address this issue, publicly available review data across all platforms was leveraged in this paper to enhance the real-time accuracy of information transmission within the supply chain. The ERNIE model was used for sentiment analysis of review texts. A set of user sentiment features was extracted, and feature engineering was conducted based on existing data. Six key features were retained. Subsequently, through Particle Swarm Optimization (PSO), a combination of weights was obtained to construct an ELM-GBDT ensemble prediction model for demand trend forecasting. The research results indicate that, compared to single models, the ensemble prediction model significantly improves the accuracy of forecasting demand trends for fresh agricultural products. Additionally, it is found that there is a relatively stable cycle in the demand trends for fresh agricultural products, which provides valuable insights for procurement decisions and inventory optimization in the supply chain.

References

[1]  Cachon, G.P. and Fisher, M. (2000) Supply Chain Inventory Management and the Value of Shared Information. Management Science, 46, 1032-1048.
https://doi.org/10.1287/mnsc.46.8.1032.12029

[2]  Chen, F., Drezner, Z., Ryan, J.K. and Simchi-Levi, D. (2000) Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information. Management Science, 46, 436-443.
https://doi.org/10.1287/mnsc.46.3.436.12069

[3]  Dejonckheere, J., Disney, S.M., Lambrecht, M.R. and Towill, D.R. (2004) The Impact of Information Enrichment on the Bullwhip Effect in Supply Chains: A Control Engineering Perspective. European Journal of Operational Research, 153, 727-750.
https://doi.org/10.1016/s0377-2217(02)00808-1

[4]  Lin, F.-R., Huang, S. and Lin, S.-C. (2002) Effects of Information Sharing on Supply Chain Performance in Electronic Commerce. IEEE Transactions on Engineering Management, 49, 258-268.
https://doi.org/10.1109/tem.2002.803388

[5]  Wang, Q., Zhang, W., Li, J., Mai, F. and Ma, Z. (2022) Effect of Online Review Sentiment on Product Sales: The Moderating Role of Review Credibility Perception. Computers in Human Behavior, 133, Article ID: 107272.
https://doi.org/10.1016/j.chb.2022.107272

[6]  丁沛, 马铁驹, 马也. 基于在线评论的新能源汽车销量影响因素研究[J]. 系统科学与数学, 2022, 42(10): 23-48.
[7]  Zhang, G. and Qiu, H. (2021) Competitive Product Identification and Sales Forecast Based on Consumer Reviews. Mathematical Problems in Engineering, 2021, Article ID: 2370692.
https://doi.org/10.1155/2021/2370692

[8]  杨亚璪, 李全森, 唐浩冬. 基于在线评论的乘用车需求趋势分析方法[J]. 运筹与管理, 2024, 33(1): 76-82.
[9]  余同瑞, 金冉, 韩晓臻, 等. 自然语言处理预训练模型的研究综述[J]. 计算机工程与应用, 2020, 56(23): 12-22.
[10]  Miguéis, V.L., Pereira, A., Pereira, J. and Figueira, G. (2022) Reducing Fresh Fish Waste While Ensuring Availability: Demand Forecast Using Censored Data and Machine Learning. Journal of Cleaner Production, 359, Article ID: 131852.
https://doi.org/10.1016/j.jclepro.2022.131852

[11]  陆佳圆, 冯毅雄, 谭建荣, 等. 产品顾客需求权重的动态趋势预测与分析[J]. 计算机集成制造系统, 2011, 17(10): 2129-2136.
[12]  沈超, 王安宁, 方钊, 等. 基于在线评论数据的产品需求趋势挖掘[J]. 中国管理科学, 2021, 29(5): 211-220.
[13]  徐小峰, 余乐安, 林姿汝, 等. 基于特征融合的生鲜商品短期销量组合预测[J]. 管理科学学报, 2022, 25(12): 102-123.
[14]  高晓辉, 周坤, 李廉水. 基于XGBOOST和ELM的混合空气质量预警系统: 以南京为例[J]. 中国管理科学, 2023, 31(5): 269-278.
[15]  范亚茹, 向兵. 基于VMD-CNN-GRU-LSTM组合模型的汽车销量预测分析[J]. 西南民族大学学报自然科学版, 2024, 50(4): 441-446.
[16]  王阳, 何利力, 郑军红. 基于改进注意力机制Transformer网络的快消品销量预测方法[J]. 智能计算机与应用, 2024, 14(1): 175-179.
[17]  Huang, G.-B., Zhou, H., Ding, X. and Zhang, R. (2012) Extreme Learning Machine for Regression and Multiclass Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42, 513-529.
https://doi.org/10.1109/tsmcb.2011.2168604

[18]  Huang, G., Chen, L. and Siew, C. (2006) Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes. IEEE Transactions on Neural Networks, 17, 879-892.
https://doi.org/10.1109/tnn.2006.875977

[19]  Huang, G., Huang, G., Song, S. and You, K. (2015) Trends in Extreme Learning Machines: A Review. Neural Networks, 61, 32-48.
https://doi.org/10.1016/j.neunet.2014.10.001

[20]  Zheng, H.R., Peng, F., Tian, Y.W., Zhang, Z.Z. and Zhang, W.T. (2023) Insurance Fraud Detection Based on XGBoost. Academic Journal of Computing & Information Science, 6, 68-74.
[21]  闫宏飞, 胡扬, 王彦恺. 面向Canvas学习管理系统的在线数据分析和挖掘研究[J]. 文献与数据学报, 2024, 4(1): 72-85.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133