|
自噬依赖性铁死亡在肝细胞癌中的治疗潜力
|
Abstract:
肝细胞癌作为一种高发恶性肿瘤,其临床治疗面临诸多瓶颈。尽管索拉非尼作为首个获得批准的晚期肝癌一线靶向治疗药物,但耐药性及毒副作用限制了其临床应用。近年来,铁死亡这一新型的细胞死亡模式在肝细胞癌的治疗领域呈现出一定的优势。铁死亡是一种非凋亡细胞死亡新方式,主要通过脂质活性氧的累积而诱发。自噬与铁死亡之间存在着错综复杂的相互作用关系,相关研究显示,自噬依赖性铁死亡借助铁蛋白自噬、脂噬等路径,在肝细胞癌的发生与发展进程中起到重要的作用。现就自噬依赖性铁死亡的生化过程和作用机制及其在肝细胞癌的研究进展进行综述,为肝细胞癌的治疗提供新的方法和思路。
Hepatocellular carcinoma (HCC) is a highly prevalent malignant tumor, and its clinical treatment encounters many bottlenecks. Although sorafenib, the first approved first-line targeted therapy drug for advanced liver cancer, has limitations in clinical application due to drug resistance and toxic side effects. Ferroptosis, a novel cell death mode, has shown certain advantages in the treatment of HCC. Ferroptosis is a new non-apoptotic cell death mode that is mainly induced by the accumulation of lipid reactive oxygen species. There is a complex interaction between autophagy and ferroptosis. Relevant studies have shown that autophagy-dependent ferroptosis plays an important role in the occurrence and development of HCC through pathways such as ferroptosis and lipophagy. This article reviews the biochemical process and mechanism of autophagy-dependent ferroptosis and its research progress in HCC, providing new methods and ideas for the treatment of HCC.
[1] | Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660 |
[2] | Maucort‐Boulch, D., de Martel, C., Franceschi, S. and Plummer, M. (2018) Fraction and Incidence of Liver Cancer Attributable to Hepatitis B and C Viruses Worldwide. International Journal of Cancer, 142, 2471-2477. https://doi.org/10.1002/ijc.31280 |
[3] | Rinaldi, L., Vetrano, E., Rinaldi, B., Galiero, R., Caturano, A., Salvatore, T., et al. (2021) HCC and Molecular Targeting Therapies: Back to the Future. Biomedicines, 9, Article 1345. https://doi.org/10.3390/biomedicines9101345 |
[4] | Forner, A., Reig, M. and Bruix, J. (2018) Hepatocellular Carcinoma. The Lancet, 391, 1301-1314. https://doi.org/10.1016/s0140-6736(18)30010-2 |
[5] | Levine, B. and Kroemer, G. (2019) Biological Functions of Autophagy Genes: A Disease Perspective. Cell, 176, 11-42. https://doi.org/10.1016/j.cell.2018.09.048 |
[6] | Mizushima, N. (2018) A Brief History of Autophagy from Cell Biology to Physiology and Disease. Nature Cell Biology, 20, 521-527. https://doi.org/10.1038/s41556-018-0092-5 |
[7] | Feng, Y., He, D., Yao, Z. and Klionsky, D.J. (2013) The Machinery of Macroautophagy. Cell Research, 24, 24-41. https://doi.org/10.1038/cr.2013.168 |
[8] | Li, W., Li, J. and Bao, J. (2011) Microautophagy: Lesser-Known Self-Eating. Cellular and Molecular Life Sciences, 69, 1125-1136. https://doi.org/10.1007/s00018-011-0865-5 |
[9] | Kaushik, S. and Cuervo, A.M. (2018) The Coming of Age of Chaperone-Mediated Autophagy. Nature Reviews Molecular Cell Biology, 19, 365-381. https://doi.org/10.1038/s41580-018-0001-6 |
[10] | Yang, W.S. and Stockwell, B.R. (2016) Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 26, 165-176. https://doi.org/10.1016/j.tcb.2015.10.014 |
[11] | Dixon, S.J., Winter, G.E., Musavi, L.S., Lee, E.D., Snijder, B., Rebsamen, M., et al. (2015) Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 10, 1604-1609. https://doi.org/10.1021/acschembio.5b00245 |
[12] | Xiang, Y., Song, X. and Long, D. (2024) Ferroptosis Regulation through Nrf2 and Implications for Neurodegenerative Diseases. Archives of Toxicology, 98, 579-615. https://doi.org/10.1007/s00204-023-03660-8 |
[13] | Torti, S.V., Manz, D.H., Paul, B.T., Blanchette-Farra, N. and Torti, F.M. (2018) Iron and Cancer. Annual Review of Nutrition, 38, 97-125. https://doi.org/10.1146/annurev-nutr-082117-051732 |
[14] | Chen, X., Li, J., Kang, R., Klionsky, D.J. and Tang, D. (2020) Ferroptosis: Machinery and Regulation. Autophagy, 17, 2054-2081. https://doi.org/10.1080/15548627.2020.1810918 |
[15] | Chatzikalil, E., Arvanitakis, K., Kalopitas, G., Florentin, M., Germanidis, G., Koufakis, T., et al. (2025) Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers, 17, Article 392. https://doi.org/10.3390/cancers17030392 |
[16] | Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042 |
[17] | Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., et al. (2016) Autophagy Promotes Ferroptosis by Degradation of Ferritin. Autophagy, 12, 1425-1428. https://doi.org/10.1080/15548627.2016.1187366 |
[18] | Kang, R. and Tang, D. (2017) Autophagy and Ferroptosis—What Is the Connection? Current Pathobiology Reports, 5, 153-159. https://doi.org/10.1007/s40139-017-0139-5 |
[19] | Knovich, M.A., Storey, J.A., Coffman, L.G., Torti, S.V. and Torti, F.M. (2009) Ferritin for the Clinician. Blood Reviews, 23, 95-104. https://doi.org/10.1016/j.blre.2008.08.001 |
[20] | Pantopoulos, K., Porwal, S.K., Tartakoff, A. and Devireddy, L. (2012) Mechanisms of Mammalian Iron Homeostasis. Biochemistry, 51, 5705-5724. https://doi.org/10.1021/bi300752r |
[21] | Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. and Kimmelman, A.C. (2014) Quantitative Proteomics Identifies NCOA4 as the Cargo Receptor Mediating Ferritinophagy. Nature, 509, 105-109. https://doi.org/10.1038/nature13148 |
[22] | Zhong, G., Li, Y., Ma, F., Huo, Y., Liao, J., Han, Q., et al. (2023) Copper Exposure Induced Chicken Hepatotoxicity: Involvement of Ferroptosis Mediated by Lipid Peroxidation, Ferritinophagy, and Inhibition of FSP1-CoQ10 and Nrf2/SLC7A11/GPX4 Axis. Biological Trace Element Research, 202, 1711-1721. https://doi.org/10.1007/s12011-023-03773-2 |
[23] | Jiang, J., Ruan, Y., Liu, X., Ma, J. and Chen, H. (2024) Ferritinophagy Is Critical for Deoxynivalenol-Induced Liver Injury in Mice. Journal of Agricultural and Food Chemistry, 72, 6660-6671. https://doi.org/10.1021/acs.jafc.4c00556 |
[24] | Wilson, M.I., Dooley, H.C. and Tooze, S.A. (2014) WIPI2b and Atg16L1: Setting the Stage for Autophagosome Formation. Biochemical Society Transactions, 42, 1327-1334. https://doi.org/10.1042/bst20140177 |
[25] | Di Giacomo, S., Briz, O., Monte, M.J., Sanchez-Vicente, L., Abete, L., Lozano, E., et al. (2019) Chemosensitization of Hepatocellular Carcinoma Cells to Sorafenib by β-Caryophyllene Oxide-Induced Inhibition of ABC Export Pumps. Archives of Toxicology, 93, 623-634. https://doi.org/10.1007/s00204-019-02395-9 |
[26] | Wu, A., Li, M., Chen, Y., Zhang, W., Li, H., Chen, J., et al. (2024) Multienzyme Active Manganese Oxide Alleviates Acute Liver Injury by Mimicking Redox Regulatory System and Inhibiting Ferroptosis. Advanced Healthcare Materials, 13, e2302556. https://doi.org/10.1002/adhm.202302556 |
[27] | Xiu, Z., Li, Y., Fang, J., Han, J., Li, S., Li, Y., et al. (2023) Inhibitory Effects of Esculetin on Liver Cancer through Triggering NCOA4 Pathway-Mediation Ferritinophagy in Vivo and in Vitro. Journal of Hepatocellular Carcinoma, 10, 611-629. https://doi.org/10.2147/jhc.s395617 |
[28] | Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., et al. (2009) Autophagy Regulates Lipid Metabolism. Nature, 458, 1131-1135. https://doi.org/10.1038/nature07976 |
[29] | Bai, Y., Meng, L., Han, L., Jia, Y., Zhao, Y., Gao, H., et al. (2019) Lipid Storage and Lipophagy Regulates Ferroptosis. Biochemical and Biophysical Research Communications, 508, 997-1003. https://doi.org/10.1016/j.bbrc.2018.12.039 |
[30] | Schroeder, B., Schulze, R.J., Weller, S.G., Sletten, A.C., Casey, C.A. and McNiven, M.A. (2015) The Small GTPase Rab7 as a Central Regulator of Hepatocellular Lipophagy. Hepatology, 61, 1896-1907. https://doi.org/10.1002/hep.27667 |
[31] | Magnone, M.C., Langmesser, S., Bezdek, A.C., Tallone, T., Rusconi, S. and Albrecht, U. (2015) The Mammalian Circadian Clock Gene Per2 Modulates Cell Death in Response to Oxidative Stress. Frontiers in Neurology, 5, Article 289. https://doi.org/10.3389/fneur.2014.00289 |
[32] | Yang, M., Chen, P., Liu, J., Zhu, S., Kroemer, G., Klionsky, D.J., et al. (2019) Clockophagy Is a Novel Selective Autophagy Process Favoring Ferroptosis. Science Advances, 5, eaaw2238. https://doi.org/10.1126/sciadv.aaw2238 |
[33] | Maiorino, M., Conrad, M. and Ursini, F. (2018) Gpx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxidants & Redox Signaling, 29, 61-74. https://doi.org/10.1089/ars.2017.7115 |
[34] | Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010 |
[35] | Wu, Z., Geng, Y., Lu, X., Shi, Y., Wu, G., Zhang, M., et al. (2019) Chaperone-Mediated Autophagy Is Involved in the Execution of Ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 116, 2996-3005. https://doi.org/10.1073/pnas.1819728116 |
[36] | Miao, Z., Tian, W., Ye, Y., Gu, W., Bao, Z., Xu, L., et al. (2022) Hsp90 Induces Acsl4-Dependent Glioma Ferroptosis via Dephosphorylating Ser637 at Drp1. Cell Death & Disease, 13, Article No. 548. https://doi.org/10.1038/s41419-022-04997-1 |
[37] | Yu, S., Li, Z., Zhang, Q., Wang, R., Zhao, Z., Ding, W., et al. (2022) GPX4 Degradation via Chaperone-Mediated Autophagy Contributes to Antimony-Triggered Neuronal Ferroptosis. Ecotoxicology and Environmental Safety, 234, Article ID: 113413. https://doi.org/10.1016/j.ecoenv.2022.113413 |
[38] | Xue, Q., Yan, D., Chen, X., Li, X., Kang, R., Klionsky, D.J., et al. (2023) Copper-Dependent Autophagic Degradation of GPX4 Drives Ferroptosis. Autophagy, 19, 1982-1996. https://doi.org/10.1080/15548627.2023.2165323 |
[39] | Bi, Y., Liu, S., Qin, X., Abudureyimu, M., Wang, L., Zou, R., et al. (2024) FUNDC1 Interacts with GPX4 to Govern Hepatic Ferroptosis and Fibrotic Injury through a Mitophagy-Dependent Manner. Journal of Advanced Research, 55, 45-60. https://doi.org/10.1016/j.jare.2023.02.012 |
[40] | Torti, S.V. and Torti, F.M. (2013) Iron and Cancer: More Ore to Be Mined. Nature Reviews Cancer, 13, 342-355. https://doi.org/10.1038/nrc3495 |
[41] | Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., et al. (2015) Activation of the P62‐keap1‐NRF2 Pathway Protects against Ferroptosis in Hepatocellular Carcinoma Cells. Hepatology, 63, 173-184. https://doi.org/10.1002/hep.28251 |
[42] | Cai, H., Meng, Z. and Yu, F. (2024) The Involvement of Ros-Regulated Programmed Cell Death in Hepatocellular Carcinoma. Critical Reviews in Oncology/Hematology, 197, Article ID: 104361. https://doi.org/10.1016/j.critrevonc.2024.104361 |
[43] | Cao, J., Wu, S., Zhao, S., Wang, L., Wu, Y., Song, L., et al. (2024) USP24 Promotes Autophagy-Dependent Ferroptosis in Hepatocellular Carcinoma by Reducing the K48-Linked Ubiquitination of Beclin1. Communications Biology, 7, Article No. 1279. https://doi.org/10.1038/s42003-024-06999-5 |
[44] | Yang, Y., Liu, C., Wang, M., Cheng, H., Wu, H., Luo, S., et al. (2024) Arenobufagin Regulates the p62-Keap1-Nrf2 Pathway to Induce Autophagy-Dependent Ferroptosis in HepG2 Cells. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397, 4895-4909. https://doi.org/10.1007/s00210-023-02916-5 |
[45] | Lin, P., Tang, H., Wu, S., Shaw, N. and Su, C. (2020) Saponin Formosanin C-Induced Ferritinophagy and Ferroptosis in Human Hepatocellular Carcinoma Cells. Antioxidants, 9, Article 682. https://doi.org/10.3390/antiox9080682 |
[46] | Wang, H., Yang, R., Wang, Z., Cao, L., Kong, D., Sun, Q., et al. (2023) Metronomic Capecitabine with Rapamycin Exerts an Immunosuppressive Effect by Inducing Ferroptosis of CD4+ T Cells after Liver Transplantation in Rat. International Immunopharmacology, 124, Article ID: 110810. https://doi.org/10.1016/j.intimp.2023.110810 |
[47] | Liang, J., Chen, M., Yan, G., Hoa, P.T.T., Wei, S., Huang, H., et al. (2025) Donafenib Activates the p53 Signaling Pathway in Hepatocellular Carcinoma, Induces Ferroptosis, and Enhances Cell Apoptosis. Clinical and Experimental Medicine, 25, Article No. 29. https://doi.org/10.1007/s10238-024-01550-6 |
[48] | Zhang, D., Man, D., Lu, J., Jiang, Y., Ding, B., Su, R., et al. (2023) Mitochondrial TSPO Promotes Hepatocellular Carcinoma Progression through Ferroptosis Inhibition and Immune Evasion. Advanced Science, 10, e2206669. https://doi.org/10.1002/advs.202206669 |
[49] | Li, M., Tang, H., Li, Z. and Tang, W. (2022) Emerging Treatment Strategies for Cerebral Ischemia-Reperfusion Injury. Neuroscience, 507, 112-124. https://doi.org/10.1016/j.neuroscience.2022.10.020 |
[50] | Tang, K., Chen, Q., Liu, Y., Wang, L. and Lu, W. (2022) Combination of Metformin and Sorafenib Induces Ferroptosis of Hepatocellular Carcinoma through p62-Keap1-Nrf2 Pathway. Journal of Cancer, 13, 3234-3243. https://doi.org/10.7150/jca.76618 |
[51] | Gunassekaran, G.R., Poongkavithai Vadevoo, S.M., Baek, M. and Lee, B. (2021) M1 Macrophage Exosomes Engineered to Foster M1 Polarization and Target the IL-4 Receptor Inhibit Tumor Growth by Reprogramming Tumor-Associated Macrophages into M1-Like Macrophages. Biomaterials, 278, Article ID: 121137. https://doi.org/10.1016/j.biomaterials.2021.121137 |
[52] | Tang, B., Zhu, J., Wang, Y., Chen, W., Fang, S., Mao, W., et al. (2022) Targeted xCT‐Mediated Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and Enhances the Efficacy of the Anti‐PD‐1/L1 Response. Advanced Science, 10, e2203973. https://doi.org/10.1002/advs.202203973 |
[53] | Guo, L., Hu, C., Yao, M. and Han, G. (2023) Mechanism of Sorafenib Resistance Associated with Ferroptosis in HCC. Frontiers in Pharmacology, 14, Article 1207496. https://doi.org/10.3389/fphar.2023.1207496 |
[54] | Wang, Q., Guo, Y., Wang, W., Liu, B., Yang, G., Xu, Z., et al. (2021) RNA Binding Protein DAZAP1 Promotes HCC Progression and Regulates Ferroptosis by Interacting with SLC7A11 mRNA. Experimental Cell Research, 399, Article ID: 112453. https://doi.org/10.1016/j.yexcr.2020.112453 |
[55] | Huang, W., Chen, K., Lu, Y., Zhang, D., Cheng, Y., Li, L., et al. (2021) ABCC5 Facilitates the Acquired Resistance of Sorafenib through the Inhibition of SLC7A11-Induced Ferroptosis in Hepatocellular Carcinoma. Neoplasia, 23, 1227-1239. https://doi.org/10.1016/j.neo.2021.11.002 |