|
藜麦多糖及糖醛酸单元抗氧化与降糖活性研究
|
Abstract:
[目的]本研究旨在探究藜麦多糖及其组成单糖的体外抗氧化与降糖活性,为藜麦多糖的功能性开发提供科学依据。[方法]通过DPPH自由基和羟自由基清除实验评估藜麦多糖的抗氧化活性,利用α-淀粉酶抑制实验评价其降糖活性。随后,对葡萄糖醛酸、半乳糖醛酸等单糖进行量效关系验证。[结果]藜麦多糖在4 mg?mL?1时,DPPH自由基清除率为13.26%,羟自由基清除率为12.71%,且在16 mg?mL?1时α-淀粉酶抑制率高达87.44%。单糖中,葡萄糖醛酸和半乳糖醛酸表现出显著的抗氧化和降糖能力。在2 mg?mL?1时,半乳糖醛酸的羟自由基清除率高达98.32%,α-淀粉酶抑制率为55.14%;葡萄糖醛酸的DPPH自由基清除率为10.27%,α-淀粉酶抑制率为48.24%。量效关系实验表明,两种单糖的活性随浓度增加而显著增强。[结论]藜麦多糖及其组成单糖在体外具有显著的抗氧化及降糖作用,尤其是葡萄糖醛酸和半乳糖醛酸表现出极高的生物活性。
[Objective] This study investigates the in vitro antioxidant and hypoglycemic activities of quinoa polysaccharides and their constituent monosaccharides, aiming to provide a scientific foundation for the functional development of quinoa polysaccharides. [Methods] The antioxidant activity of quinoa polysaccharides was evaluated using DPPH radical and hydroxyl radical scavenging assays. Hypoglycemic activity was assessed via α-amylase inhibition assays. Additionally, the dose-effect relationships of monosaccharides, including glucuronic acid and galacturonic acid, were examined. [Results] At a concentration of 4 mg?mL?1, quinoa polysaccharides demonstrated a DPPH radical scavenging rate of 13.26% and a hydroxyl radical scavenging rate of 12.71%. At 16 mg?mL?1, the α-amylase inhibition rate reached 87.44%. Among the monosaccharides, glucuronic acid and galacturonic acid exhibited remarkable antioxidant and hypoglycemic activities. Specifically, at 2 mg?mL?1, galacturonic acid achieved a hydroxyl radical scavenging rate of 98.32% and an α-amylase inhibition rate of 55.14%. Glucuronic acid showed a DPPH radical scavenging rate of 10.27% and an α-amylase inhibition rate of 48.24%. Dose-effect experiments revealed that the activities of these two monosaccharides increased significantly with concentration. [Conclusion] Quinoa polysaccharides and their constituent monosaccharides, particularly glucuronic acid and galacturonic acid, exhibit significant antioxidant and hypoglycemic effects in vitro. These findings highlight the potential of quinoa polysaccharides and their monosaccharides as functional ingredients for applications in health and nutrition.
[1] | 张亚萍, 王致和, 张秀华, 等. 14个藜麦品种(系)在祁连山区的农艺性状表现及其与产量的关系分析[J]. 山东农业科学, 2021, 53(8): 17-21. |
[2] | 董晶, 张焱, 曹赵茹, 等. 藜麦总黄酮的超声波法提取及抗氧化活性[J]. 江苏农业科学, 2015, 43(4): 267-269. |
[3] | 温映红, 丁超, 李素娟, 等. 山西静乐藜麦产业发展现状及对策建议[J]. 河北农业科学, 2021, 25(4): 19-21. |
[4] | 杨敏, 奚军伟. 黑藜麦多糖超声辅助提取工艺及其抗氧化活性、稳定性研究[J]. 湖北农业科学, 2023, 62(8): 160-166. |
[5] | Fan, S., Li, J. and Bai, B. (2019) Purification, Structural Elucidation and in Vivo Immunity-Enhancing Activity of Polysaccharides from Quinoa (Chenopodium quinoa Willd.) Seeds. Bioscience, Biotechnology, and Biochemistry, 83, 2334-2344. https://doi.org/10.1080/09168451.2019.1650635 |
[6] | 刘月瑶, 路飞, 高雨晴, 等. 藜麦的营养价值、功能特性及其制品研究进展[J]. 包装工程, 2020, 41(5): 56-65. |
[7] | 张亚坤, 王金荣, 黄进, 等. 多糖的磷酸化修饰及其生物活性研究进展[J]. 食品安全质量检测学报, 2021, 12(20): 8172-8177. |
[8] | Wang, L., Li, C., Huang, Q. and Fu, X. (2019) Polysaccharide from Rosa roxburghii Tratt Fruit Attenuates Hyperglycemia and Hyperlipidemia and Regulates Colon Microbiota in Diabetic db/db Mice. Journal of Agricultural and Food Chemistry, 68, 147-159. https://doi.org/10.1021/acs.jafc.9b06247 |
[9] | Cao, C., Zhang, B., Li, C., Huang, Q., Fu, X. and Liu, R.H. (2019) Structure and in Vitro Hypoglycemic Activity of a Homogenous Polysaccharide Purified from Sargassum pallidum. Food & Function, 10, 2828-2838. https://doi.org/10.1039/c8fo02525h |
[10] | Wu, J., Chen, M., Shi, S., Wang, H., Li, N., Su, J., et al. (2017) Hypoglycemic Effect and Mechanism of a Pectic Polysaccharide with Hexenuronic Acid from the Fruits of Ficus pumila L. in C57BL/KsJ db/db Mice. Carbohydrate Polymers, 178, 209-220. https://doi.org/10.1016/j.carbpol.2017.09.050 |
[11] | Tan, M., Chang, S., Liu, J., Li, H., Xu, P., Wang, P., et al. (2020) Physicochemical Properties, Antioxidant and Antidiabetic Activities of Polysaccharides from Quinoa (Chenopodium quinoa Willd.) Seeds. Molecules, 25, Article No. 3840. https://doi.org/10.3390/molecules25173840 |
[12] | Yang, Q., Chang, S., Zhang, X., Luo, F., Li, W. and Ren, J. (2024) The Fate of Dietary Polysaccharides in the Digestive Tract. Trends in Food Science & Technology, 150, Article ID: 104606. https://doi.org/10.1016/j.tifs.2024.104606 |
[13] | 李佳妮, 白宝清, 金晓第, 等. 酶解超声波协同提取藜麦多糖及体外活性评价[J]. 食品研究与开发, 2019, 40(8): 57-64. |
[14] | 袁俊杰, 蒋玉蓉, 孙雪婷, 等. 藜麦多糖提取工艺的响应面法优化及其品种差异[J]. 食品科技, 2016, 41(1): 162-167. |
[15] | 徐澜, 郭晨晨, 赵慧. 超声波辅助提取藜麦多糖及其抑菌性与抗氧化性[J]. 江苏农业科学, 2017, 45(11): 143-146. |
[16] | 林冰洁, 毛肇洁, 余远, 等. 藜麦麸皮多糖的提取及理化性质和活性研究[J]. 食品科技, 2021, 46(8): 171-178. |
[17] | 李奕葶, 王文振, 赵嘉伟, 等. 真姬菇菌丝体发酵藜麦产物中多糖的抗氧化和α-淀粉酶抑制活性[J]. 食品研究与开发, 2022, 43(2): 19-27. |
[18] | Wardman, J.F., Bains, R.K., Rahfeld, P. and Withers, S.G. (2022) Carbohydrate-Active Enzymes (Cazymes) in the Gut Microbiome. Nature Reviews Microbiology, 20, 542-556. https://doi.org/10.1038/s41579-022-00712-1 |
[19] | 李佳妮. 藜麦多糖分离纯化、结构鉴定及免疫活性研究[D]: [硕士学位论文]. 太原: 山西大学, 2020. |
[20] | 刘树兴, 任益平, 李浩恒, 等. 藜麦多糖的分离纯化及结构初步分析[J]. 中国食品添加剂, 2019, 30(10): 48-52. |
[21] | Xu, M., Shi, F., Gao, Y., Han, S., Huang, C., Hou, Q., et al. (2024) Arabinose Confers Protection against Intestinal Injury by Improving Integrity of Intestinal Mucosal Barrier. International Immunopharmacology, 126, Article ID: 111188. https://doi.org/10.1016/j.intimp.2023.111188 |
[22] | He, P., Zhang, A., Zhang, F., Linhardt, R.J. and Sun, P. (2016) Structure and Bioactivity of a Polysaccharide Containing Uronic Acid from Polyporus umbellatus Sclerotia. Carbohydrate Polymers, 152, 222-230. https://doi.org/10.1016/j.carbpol.2016.07.010 |
[23] | Wu, S., Li, F., Jia, S., Ren, H., Gong, G., Wang, Y., et al. (2014) Drying Effects on the Antioxidant Properties of Polysaccharides Obtained from Agaricus blazei Murrill. Carbohydrate Polymers, 103, 414-417. https://doi.org/10.1016/j.carbpol.2013.11.075 |
[24] | Dong, Y., Wang, Z., Chen, C., Wang, P. and Fu, X. (2023) A Review on the Hypoglycemic Effect, Mechanism and Application Development of Natural Dietary Polysaccharides. International Journal of Biological Macromolecules, 253, Article ID: 127267. https://doi.org/10.1016/j.ijbiomac.2023.127267 |
[25] | Gong, L., Feng, D., Wang, T., Ren, Y., Liu, Y. and Wang, J. (2020) Inhibitors of Α‐amylase and Α‐glucosidase: Potential Linkage for Whole Cereal Foods on Prevention of Hyperglycemia. Food Science & Nutrition, 8, 6320-6337. https://doi.org/10.1002/fsn3.1987 |