|
Finance 2025
基于ARMA-TGARCH-M模型的深证B股波动率的实证分析
|
Abstract:
本文选取2014~2024年间的深证股交易数据,建立ARMA(1,8)-TGARCH(1,1)-M对该指数的收益率数据进行实证分析,实证结果表明,该收益率数据具有长期记性、非对称性效应以及收益率和波动性成正向变动关系。针对以上问题提出如下建议:1) 加强市场监管与信息披露,强化监管力度;2) 优化信息披露制度;3) 加强宏观政策调控与市场,采取稳定货币政策与财政政策协调,加强跨境资本流动管理;4) 推动市场制度改革与创新。运用政策促进B股市场机制的改革和交易活力的提升,同时提升我国信息产业的发展水平。
This paper selects the trading data of Shenzhen government stocks from 2014 to 2024, and establishes an empirical analysis of the return data of ARMA(1,8)-TGARCH(1,1)-M for the index, and the empirical results show that the return data has long-term memory, asymmetric effect, and a positive change relationship between return and volatility. In view of the above problems, the following suggestions are put forward: 1) strengthen market supervision and information disclosure, strengthen supervision; 2) optimize the information disclosure system; 3) strengthen macro policy regulation and control, adopt stable monetary policy and fiscal policy coordination, strengthen the management of cross-border capital flows; 4) promote the reform and innovation of market system, using policies to stimulate the reform of the B-share market mechanism and the improvement of trading vitality, and at the same time improve the development level of China's information industry.
[1] | Christie, A. (1982) The Stochastic Behavior of Common Stock Variances Value, Leverage and Interest Rate Effects. Journal of Financial Economics, 10, 407-432. https://doi.org/10.1016/0304-405x(82)90018-6 |
[2] | Kahneman, D. and Tversky, A. (1979) Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47, 263-291. https://doi.org/10.2307/1914185 |
[3] | Campbell, J.Y. and Hentschel, L. (1992) No News Is Good News: An Asymmetric Model of Changing Volatility in Stock Returns. Journal of Financial Economics, 31, 281-318. https://doi.org/10.1016/0304-405x(92)90037-x |
[4] | Engle, R.F. and Ng, V.K. (1993) Measuring and Testing the Impact of News on Volatility. The Journal of Finance, 48, 1749-1778. https://doi.org/10.1111/j.1540-6261.1993.tb05127.x |
[5] | 孙静. 沪深B股收益率波动性分析[J]. 黑龙江科技信息, 2007(3): 87. |
[6] | 刘子园. 基于GARCH类模型的股票波动性研究——以上证A股和上证B股指数为例[J]. 中小企业管理与科技(下旬刊), 2020(5): 99-100. |
[7] | 徐智琦. 基于ARMA-GARCH模型的中证绿色债券指数预测[J]. 商业观察, 2024, 10(17): 72-75, 82. |
[8] | 杨帷. 基于ARIMA-GARCH模型的上证综指实证分析[D]: [硕士学位论文]. 湘潭: 湘潭大学, 2017. |
[9] | 农馨谧. 基于ARIMA和GARCH模型的上证指数预测及组合投资研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2020. |
[10] | 周静雯. 基于ARIMA模型的股票预测——以中国银行为例[J]. 现代计算机, 2024, 30(14): 89-92. |
[11] | 熊政, 车文刚. ARIMA-GARCH-M模型在短期股票预测中的应用[J]. 陕西理工大学学报(自然科学版), 2022, 38(4): 69-74. |
[12] | 曾悦. 基于GARCH族模型研究国际原油期货价格的波动特征——以WTI原油期货为例[J]. 投资与合作, 2024(9): 62-64. |
[13] | 成城. 基于GARCH模型的上证指数波动率特征分析[D]: [硕士学位论文]. 济南: 山东大学, 2014. |
[14] | 赵欢. 基于GARCH族模型我国金融期货市场波动率及相关性研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2015. |
[15] | 赵静. B股——“金矿”还是“鸡肋” [J]. 商业文化(下半月), 2012(10): 149-150. |
[16] | 周爱民, 陈学胜, 孟庆斌. 流动性、风险收益与B股市场境外投资者行为[J]. 广东金融学院学报, 2008(3): 100-105, 129. |
[17] | 谭艳君. 我国B股市场困境及改革探讨[J]. 经济视角(下), 2012(1): 74-76. |