全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

抗高温堵漏材料研究进展与展望
Research Progress and Prospects of High-Temperature Resistant Plugging Materials

DOI: 10.12677/me.2025.133047, PP. 423-431

Keywords: 钻井安全,井漏机理,抗高温堵漏材料,高温地层
Drilling Safety
, Lost Circulation Mechanisms, High-Temperature Resistant Plugging Materials, High-Temperature Formations

Full-Text   Cite this paper   Add to My Lib

Abstract:

钻井过程中遇到井漏问题是常见但棘手的挑战,井漏会导致资源浪费、增加作业成本,甚至可能引发井喷等安全隐患。井漏问题影响钻井效率与安全,尤其在高温深层地层中,井漏处理更为困难。文章主要讨论了抗高温堵漏材料的发展现状,聚焦于纤维型、环氧树脂型、可酸溶型、凝胶型、复合型和智能型材料。这些材料在耐高温、耐压、封堵效果和化学稳定性等方面有所突破。各类材料通过提升成分、工艺及配比,有效应对复杂地层的井漏问题,如纤维材料强化了裂缝桥接,环氧树脂材料具有优异的渗透性和强度,而智能材料则能感知环境变化自动适应。文章最后提出了进一步优化材料配方、建立评价体系及快速响应堵漏材料的建议,以提升井漏处理效果,促进高温地层钻井作业的安全与效率。
Lost circulation in drilling is a common yet challenging issue, often leading to resource wastage, increased operational costs, and potential blowout hazards. Lost circulation impacts drilling efficiency and safety, especially in high-temperature deep formations, where control becomes more difficult. This paper discusses recent advancements in high-temperature resistant plugging materials, focusing on fiber-based, epoxy resin-based, acid-soluble, gel-based, composite, and intelligent materials. These materials have made significant progress in temperature resistance, pressure resistance, sealing efficiency, and chemical stability. By improving composition, processing, and formulations, these materials effectively address lost circulation issues in complex formations. For example, fiber materials enhance fracture bridging, epoxy resin materials exhibit excellent permeability and strength, while intelligent materials can adapt automatically to environmental changes. The paper concludes by recommending further optimization of material formulations, the establishment of evaluation systems, and the rapid selection of suitable plugging materials to improve the efficacy of lost circulation control, ensuring safety and efficiency in high-temperature drilling operations.

References

[1]  徐楷, 苏堪华, 李猛, 等. 机器学习在油气钻井工程中的应用[J]. 非常规油气, 2023, 10(5): 8-17.
[2]  孙金声, 王韧, 龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液, 2024, 41(1): 1-30.
[3]  洪纯阳. 液氮循环压裂干热岩裂缝起裂与扩展机理研究[D]: [博士学位论文]. 北京: 中国石油大学, 2023.
[4]  谢平, 蒋丽雯, 赵尧, 等. 基于神经网络的井涌井漏实时预测方法研究[J]. 现代计算机(专业版), 2018(11): 23-28.
[5]  董洪栋. 松科2井抗高温随钻堵漏材料优选及封堵效果评价[D]: [硕士学位论文]. 成都: 成都理工大学, 2017.
[6]  陈家旭. 高效纤维防漏堵漏技术实验研究[D]: [硕士学位论文]. 东营: 中国石油大学, 2019.
[7]  暴丹. 裂缝地层致密承压封堵机理与钻井液堵漏技术研究[D]: [博士学位论文]. 东营: 中国石油大学, 2020.
[8]  Elhadary, M., Hamdy, A. and Shaker, W. (2022) Effect of Fiber Bridging in Composites Healing. Alexandria Engineering Journal, 61, 2769-2774.
https://doi.org/10.1016/j.aej.2021.08.002
[9]  Dioguardi, M., Alovisi, M., Sovereto, D., Troiano, G., Malagnino, G., Di Cosola, M., et al. (2021) Sealing Ability and Microbial Leakage of Root-End Filling Materials: MTA versus Epoxy Resin: A Systematic Review and Meta-Analysis. Heliyon, 7, e07494.
https://doi.org/10.1016/j.heliyon.2021.e07494
[10]  杜江波. 高温条件下可固化钻井堵漏材料的研究[D]: [硕士学位论文]. 天津: 天津大学, 2020.
[11]  郭锦棠, 杜江波, 冯杰, 等. 高温高压钻井用堵漏材料的制备及性能研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(6): 593-598.
[12]  Cheng, J., Li, J. and Zhang, J.Y. (2009) Curing Behavior and Thermal Properties of Trifunctional Epoxy Resin Cured by 4, 4’-Diaminodiphenyl Sulfone. Express Polymer Letters, 3, 501-509.
https://doi.org/10.3144/expresspolymlett.2009.62
[13]  Gao, C.H. (2019) Drilling Fluids for High Temperature Wells. Petroleum & Coal, 61.
[14]  钟小军. 冀中坳陷深潜山抗高温可酸溶堵漏体系研究与优化[D]: [硕士学位论文]. 东营: 中国石油大学, 2020.
[15]  陈彬, 金勇, 张伟, 等. 一种抗高温暂堵剂的研制[J]. 当代化工, 2022, 51(3): 505-508+512.
[16]  聂育志. 顺托区块钻井液堵漏技术研究[D]: [硕士学位论文]. 东营: 中国石油大学, 2019.
[17]  方俊伟, 贾晓斌, 游利军, 等. 深层断溶体油气藏钻完井储层保护技术挑战与对策[J]. 断块油气田, 2024, 31(1): 160-167.
[18]  Li, C., Yang, S., Wen, Z., Pan, Y., Zeng, F., Zhao, C., et al. (2020) The Research of New Type Gel Plugging Agent for Deep Well. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46, 7485-7499.
https://doi.org/10.1080/15567036.2020.1756538
[19]  胡子乔, 刘四海, 张金成, 等. 新型抗高温二次交联凝胶堵漏材料的研制[J]. 探矿工程(岩土钻掘工程), 2016, 43(7): 103-106.
[20]  杨超, 吴爽, 平善海, 等. 抗高温承压复合堵漏凝胶室内研制及评价[J]. 辽宁化工, 2021, 50(12): 1785-1788+1792.
[21]  罗明望. 抗高温可控凝胶堵漏技术研究[D]: [硕士学位论文]. 荆州: 长江大学, 2021.
[22]  章江. 抗高温延迟交联型聚合物凝胶堵漏剂研制及应用[D]: [硕士学位论文]. 成都: 成都理工大学, 2021.
[23]  Huang, X., Meng, X., Lv, K., Zhang, Z., Cao, L., Wang, R., et al. (2022) Development of a High Temperature Resistant Nano-Plugging Agent and the Plugging Performance of Multi-Scale Micropores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 639, Article 128275.
https://doi.org/10.1016/j.colsurfa.2022.128275
[24]  程鹏至, 易偲文, 梅林德, 等. 新型堵漏材料的研制及性能评价[J]. 钻井液与完井液, 2016, 33(3): 51-55.
[25]  苏晓明, 练章华, 方俊伟, 等. 适用于塔中区块碳酸盐岩缝洞型异常高温高压储集层的钻井液承压堵漏材料[J]. 石油勘探与开发, 2019, 46(1): 165-172.
[26]  王建华, 王玺, 柳丙善, 等. 油基钻井液用改性树脂类抗高温防漏堵漏剂研究[J]. 当代化工研究, 2021(3): 150-152.
[27]  蒋炳, 严君凤, 张统得. HTD-3型高温堵漏材料研制及性能评价[J]. 钻探工程, 2022, 49(1): 57-63.
[28]  Li, Z., Zhou, Y., Qu, L. and Zhang, X. (2023) Smart Plugging and Low-Damage Foam Drilling Fluid Technology for CBM Drilling. International Journal of Oil, Gas and Coal Technology, 32, 103-125.
https://doi.org/10.1504/ijogct.2023.128050
[29]  庞雨微, 袁俊秀, 朱魁, 等. 一种速溶型阳离子聚丙烯酰胺类包被剂及其制备方法[P]. 中国专利, 106609132A, 2017-01-04.
[30]  暴丹, 邱正松, 赵欣, 等. 基于温敏形状记忆特性的智能化堵漏材料研究展望[J]. 钻井液与完井液, 2019, 36(3): 265-272.
[31]  王照辉, 崔凯潇, 蒋官澄, 等. 基于形状记忆环氧树脂聚合物的温敏可膨胀型堵漏剂研制及性能评价[J]. 钻井液与完井液, 2020, 37(4): 412-420.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133