|
用于活细胞成像的超分辨光学显微镜方法与应用
|
Abstract:
细胞是生命体活动的基本单元,对活细胞的实时观测有助于在更接近生理的条件下观察其细微结构及其动力学过程,理解生命的本质。近三十年,超分辨光学显微成像技术(Super-Resolution Microscopy, SRM)和相关技术的发展,允许人们在突破衍射极限的尺度下对活细胞进行观察与研究,然而这些技术早期应用于活细胞成像领域时遭受到了不同程度的挑战,而随着后续荧光染料等相关技术的发展,SRM在活细胞成像领域的应用愈加广泛。本文通过简要介绍目前常见的几种SRM以及近些年受到广泛关注的最小光子通量(MINFLUX)等显微技术的基本原理和特点,梳理了其在活细胞成像领域的最新应用。
As the fundamental unit of life activities, the real-time observation of live cells facilitates the investigation of their intricate structures and dynamic processes under conditions closer to physiological states, thereby advancing our understanding of life’s essence. Over the past three decades, advancements in super-resolution microscopy (SRM) and related technologies have enabled the observation and study of live cells at scales surpassing the diffraction limit. However, the initial application of these techniques in live-cell imaging faced significant challenges. With subsequent advancements in fluorescent dyes and other ancillary technologies, SRM has become increasingly applied in live-cell imaging. This review provides a concise introduction to the principles and characteristics of several widely used SRM techniques, as well as emerging methodologies such as minimal photon flux (MINFLUX) microscopy, which has garnered substantial attention in recent years. Additionally, we summarize their latest applications and breakthroughs in the field of live-cell imaging.
[1] | Schermelleh, L., Ferrand, A., Huser, T., Eggeling, C., Sauer, M., Biehlmaier, O., et al. (2019) Super-Resolution Microscopy Demystified. Nature Cell Biology, 21, 72-84. https://doi.org/10.1038/s41556-018-0251-8 |
[2] | Balzarotti, F., Eilers, Y., Gwosch, K.C., Gynnå, A.H., Westphal, V., Stefani, F.D., et al. (2017) Nanometer Resolution Imaging and Tracking of Fluorescent Molecules with Minimal Photon Fluxes. Science, 355, 606-612. https://doi.org/10.1126/science.aak9913 |
[3] | Laissue, P.P., Alghamdi, R.A., Tomancak, P., Reynaud, E.G. and Shroff, H. (2017) Assessing Phototoxicity in Live Fluorescence Imaging. Nature Methods, 14, 657-661. https://doi.org/10.1038/nmeth.4344 |
[4] | Chen, X., Zhong, S., Hou, Y., Cao, R., Wang, W., Li, D., et al. (2023) Superresolution Structured Illumination Microscopy Reconstruction Algorithms: A Review. Light: Science & Applications, 12, Article No. 172. https://doi.org/10.1038/s41377-023-01204-4 |
[5] | 乔良, 唐远河, 张昊. 多维度结构光显微成像及其生物应用[D]: [硕士学位论文]. 西安: 西安理工大学, 2021. |
[6] | Lukosz, W. and Marchand, M. (1963) Optischen Abbildung Unter Überschreitung der Beugungsbedingten Auflösungsgrenze. Optica Acta: International Journal of Optics, 10, 241-255. https://doi.org/10.1080/713817795 |
[7] | Gustafsson, M.G.L. (2000) Surpassing the Lateral Resolution Limit by a Factor of Two Using Structured Illumination Microscopy. Journal of Microscopy, 198, 82-87. https://doi.org/10.1046/j.1365-2818.2000.00710.x |
[8] | Szikora, S., Görög, P., Kozma, C. and Mihály, J. (2021) Drosophila Models Rediscovered with Super-Resolution Microscopy. Cells, 10, Article 1924. https://doi.org/10.3390/cells10081924 |
[9] | Cox, S. (2015) Super-Resolution Imaging in Live Cells. Developmental Biology, 401, 175-181. https://doi.org/10.1016/j.ydbio.2014.11.025 |
[10] | Richter, V., Piper, M., Wagner, M. and Schneckenburger, H. (2019) Increasing Resolution in Live Cell Microscopy by Structured Illumination (SIM). Applied Sciences, 9, Article 1188. https://doi.org/10.3390/app9061188 |
[11] | Fiolka, R., Shao, L., Rego, E.H., Davidson, M.W. and Gustafsson, M.G.L. (2012) Time-Lapse Two-Color 3D Imaging of Live Cells with Doubled Resolution Using Structured Illumination. Proceedings of the National Academy of Sciences, 109, 5311-5315. https://doi.org/10.1073/pnas.1119262109 |
[12] | 张娇, 何勤, 武泽凯. 超分辨显微成像技术在活细胞成像中的应用与发展[J]. 生物化学与生物物理进展, 2021, 48(11): 1301-1315. |
[13] | 陈婕, 刘文娟, 徐兆超. 多种超分辨荧光成像技术比较和进展评述[J]. 色谱, 2021, 39(10): 1055-1064. |
[14] | Hirvonen, L., Mandula, O., Wicker, K. and Heintzmann, R. (2008) Structured Illumination Microscopy Using Photoswitchable Fluorescent Proteins. SPIE Proceedings, 6861, 68610L. https://doi.org/10.1117/12.763021 |
[15] | Qiao, C., Chen, X., Zhang, S., Li, D., Guo, Y., Dai, Q., et al. (2021) 3D Structured Illumination Microscopy via Channel Attention Generative Adversarial Network. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-11. https://doi.org/10.1109/jstqe.2021.3060762 |
[16] | 鲁心怡, 黄昱, 张梓童, 等. 深度学习在超分辨显微成像中的研究进展(特邀) [J]. 激光与光电子学进展, 2024, 61(16): 31-48. |
[17] | Wang, J., Fan, J., Zhou, B., Huang, X. and Chen, L. (2023) Hybrid Reconstruction of the Physical Model with the Deep Learning That Improves Structured Illumination Microscopy. Advanced Photonics Nexus, 2, Article 016012. https://doi.org/10.1117/1.apn.2.1.016012 |
[18] | Kner, P., Chhun, B.B., Griffis, E.R., Winoto, L. and Gustafsson, M.G.L. (2009) Super-Resolution Video Microscopy of Live Cells by Structured Illumination. Nature Methods, 6, 339-342. https://doi.org/10.1038/nmeth.1324 |
[19] | Shao, L., Kner, P., Rego, E.H. and Gustafsson, M.G.L. (2011) Super-Resolution 3D Microscopy of Live Whole Cells Using Structured Illumination. Nature Methods, 8, 1044-1046. https://doi.org/10.1038/nmeth.1734 |
[20] | Li, D., Shao, L., Chen, B., Zhang, X., Zhang, M., Moses, B., et al. (2015) Extended-Resolution Structured Illumination Imaging of Endocytic and Cytoskeletal Dynamics. Science, 349, aab3500. https://doi.org/10.1126/science.aab3500 |
[21] | Guo, Y., Li, D., Zhang, S., Yang, Y., Liu, J., Wang, X., et al. (2018) Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales. Cell, 175, 1430-1442.E17. https://doi.org/10.1016/j.cell.2018.09.057 |
[22] | Ouyang, Z., Wang, Q., Li, X., Dai, Q., Tang, M., Shao, L., et al. (2024) Elucidating Subcellular Architecture and Dynamics at Isotropic 100-Nm Resolution with 4Pi-SIM. Nature Methods, 22, 335-347. https://doi.org/10.1038/s41592-024-02515-z |
[23] | Hell, S.W. and Wichmann, J. (1994) Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-Emission-Depletion Fluorescence Microscopy. Optics Letters, 19, 780-782. https://doi.org/10.1364/ol.19.000780 |
[24] | Klar, T.A. and Hell, S.W. (1999) Subdiffraction Resolution in Far-Field Fluorescence Microscopy. Optics Letters, 24, 954-956. https://doi.org/10.1364/ol.24.000954 |
[25] | Hell, S.W., Willig, K.I., Dyba, M., Jakobs, S., Kastrup, L. and Westphal, V. (2006) Nanoscale Resolution with Focused Light: Stimulated Emission Depletion and Other Reversible Saturable Optical Fluorescence Transitions Microscopy Concepts. In: Pawley, J., Ed., Handbook of Biological Confocal Microscopy, Springer, 571-579. https://doi.org/10.1007/978-0-387-45524-2_31 |
[26] | Heine, J., Reuss, M., Harke, B., D’Este, E., Sahl, S.J. and Hell, S.W. (2017) Adaptive-Illumination STED Nanoscopy. Proceedings of the National Academy of Sciences, 114, 9797-9802. https://doi.org/10.1073/pnas.1708304114 |
[27] | Li, M. (2020) Deep Adversarial Network for Super Stimulated Emission Depletion Imaging. Journal of Nanophotonics, 14, Article 016009. https://doi.org/10.1117/1.jnp.14.016009 |
[28] | Ebrahimi, V., Stephan, T., Kim, J., Carravilla, P., Eggeling, C., Jakobs, S., et al. (2023) Deep Learning Enables Fast, Gentle STED Microscopy. Communications Biology, 6, Article No. 674. https://doi.org/10.1038/s42003-023-05054-z |
[29] | 周汉秋, 朱殷铷, 韩鸿怡, 等. 基于受激发射损耗显微术的活细胞和活体超分辨成像[J]. 生物化学与生物物理进展, 2023, 50(3): 513-528. |
[30] | Lukinavičius, G., Umezawa, K., Olivier, N., Honigmann, A., Yang, G., Plass, T., et al. (2013) A Near-Infrared Fluorophore for Live-Cell Super-Resolution Microscopy of Cellular Proteins. Nature Chemistry, 5, 132-139. https://doi.org/10.1038/nchem.1546 |
[31] | Bottanelli, F., Kromann, E.B., Allgeyer, E.S., Erdmann, R.S., Wood Baguley, S., Sirinakis, G., et al. (2016) Two-Colour Live-Cell Nanoscale Imaging of Intracellular Targets. Nature Communications, 7, Article No. 10778. https://doi.org/10.1038/ncomms10778 |
[32] | Wang, C., Taki, M., Sato, Y., Tamura, Y., Yaginuma, H., Okada, Y., et al. (2019) A Photostable Fluorescent Marker for the Superresolution Live Imaging of the Dynamic Structure of the Mitochondrial Cristae. Proceedings of the National Academy of Sciences, 116, 15817-15822. https://doi.org/10.1073/pnas.1905924116 |
[33] | Yang, X., Yang, Z., Wu, Z., He, Y., Shan, C., Chai, P., et al. (2020) Mitochondrial Dynamics Quantitatively Revealed by STED Nanoscopy with an Enhanced Squaraine Variant Probe. Nature Communications, 11, Article No. 3699. https://doi.org/10.1038/s41467-020-17546-1 |
[34] | Liu, T., Stephan, T., Chen, P., Keller-Findeisen, J., Chen, J., Riedel, D., et al. (2022) Multi-Color Live-Cell STED Nanoscopy of Mitochondria with a Gentle Inner Membrane Stain. Proceedings of the National Academy of Sciences, 119, e2215799119. https://doi.org/10.1073/pnas.2215799119 |
[35] | Lelek, M., Gyparaki, M.T., Beliu, G., Schueder, F., Griffié, J., Manley, S., et al. (2021) Single-Molecule Localization Microscopy. Nature Reviews Methods Primers, 1, Article No. 39. https://doi.org/10.1038/s43586-021-00038-x |
[36] | Thompson, R.E., Larson, D.R. and Webb, W.W. (2002) Precise Nanometer Localization Analysis for Individual Fluorescent Probes. Biophysical Journal, 82, 2775-2783. https://doi.org/10.1016/s0006-3495(02)75618-x |
[37] | Rust, M.J., Bates, M. and Zhuang, X. (2006) Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM). Nature Methods, 3, 793-796. https://doi.org/10.1038/nmeth929 |
[38] | Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., et al. (2006) Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science, 313, 1642-1645. https://doi.org/10.1126/science.1127344 |
[39] | 何辰颖, 詹政以, 李传康, 等. 亚20nm荧光超分辨显微技术研究进展(特邀) [J]. 激光与光电子学进展, 2024, 61(2): 64-76. |
[40] | Carsten, A., Failla, A.V. and Aepfelbacher, M. (2025) MINFLUX Nanoscopy: Visualising Biological Matter at the Nanoscale Level. Journal of Microscopy, 298, 219-231. |
[41] | Cheezum, M.K., Walker, W.F. and Guilford, W.H. (2001) Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles. Biophysical Journal, 81, 2378-2388. https://doi.org/10.1016/s0006-3495(01)75884-5 |
[42] | Aguet, F., Van De Ville, D. and Unser, M. (2005) A Maximum-Likelihood Formalism for Sub-Resolution Axial Localization of Fluorescent Nanoparticles. Optics Express, 13, 10503-10522. https://doi.org/10.1364/opex.13.010503 |
[43] | Zhu, L., Zhang, W., Elnatan, D. and Huang, B. (2012) Faster STORM Using Compressed Sensing. Nature Methods, 9, 721-723. https://doi.org/10.1038/nmeth.1978 |
[44] | Nehme, E., Weiss, L.E., Michaeli, T. and Shechtman, Y. (2018) Deep-STORM: Super-Resolution Single-Molecule Microscopy by Deep Learning. Optica, 5, 458-464. https://doi.org/10.1364/optica.5.000458 |
[45] | Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. and Hagen, G.M. (2014) Thunderstorm: A Comprehensive Imagej Plug-in for PALM and STORM Data Analysis and Super-Resolution Imaging. Bioinformatics, 30, 2389-2390. https://doi.org/10.1093/bioinformatics/btu202 |
[46] | Speiser, A., Müller, L., Hoess, P., Matti, U., Obara, C.J., Legant, W.R., et al. (2021) Deep Learning Enables Fast and Dense Single-Molecule Localization with High Accuracy. Nature Methods, 18, 1082-1090. https://doi.org/10.1038/s41592-021-01236-x |
[47] | Kumar Gaire, S., Zhang, Y., Li, H., Yu, R., Zhang, H.F. and Ying, L. (2020) Accelerating Multicolor Spectroscopic Single-Molecule Localization Microscopy Using Deep Learning. Biomedical Optics Express, 11, 2705-2721. https://doi.org/10.1364/boe.391806 |
[48] | Heilemann, M., van de Linde, S., Mukherjee, A. and Sauer, M. (2009) Super‐Resolution Imaging with Small Organic Fluorophores. Angewandte Chemie International Edition, 48, 6903-6908. https://doi.org/10.1002/anie.200902073 |
[49] | Jungmann, R., Avendaño, M.S., Woehrstein, J.B., Dai, M., Shih, W.M. and Yin, P. (2014) Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT. Nature Methods, 11, 313-318. https://doi.org/10.1038/nmeth.2835 |
[50] | Niederauer, C., Nguyen, C., Wang-Henderson, M., Stein, J., Strauss, S., Cumberworth, A., et al. (2023) Dual-Color DNA-PAINT Single-Particle Tracking Enables Extended Studies of Membrane Protein Interactions. Nature Communications, 14, Article No. 4345. https://doi.org/10.1038/s41467-023-40065-8 |
[51] | Deguchi, T., Iwanski, M.K., Schentarra, E.M., et al. (2022) Direct Observation of Motor Protein Stepping in Living Cells Using MINFLUX. bioRxiv: 2022.07.25.500391. |
[52] | Schleske, J.M., Hubrich, J., Wirth, J.O., D’Este, E., Engelhardt, J. and Hell, S.W. (2024) MINFLUX Reveals Dynein Stepping in Live Neurons. Proceedings of the National Academy of Sciences, 121, e2412241121. https://doi.org/10.1073/pnas.2412241121 |
[53] | Gwosch, K.C., Pape, J.K., Balzarotti, F., Hoess, P., Ellenberg, J., Ries, J., et al. (2020) MINFLUX Nanoscopy Delivers 3D Multicolor Nanometer Resolution in Cells. Nature Methods, 17, 217-224. https://doi.org/10.1038/s41592-019-0688-0 |
[54] | Valli, J., Garcia-Burgos, A., Rooney, L.M., Vale de Melo e Oliveira, B., Duncan, R.R. and Rickman, C. (2021) Seeing Beyond the Limit: A Guide to Choosing the Right Super-Resolution Microscopy Technique. Journal of Biological Chemistry, 297, Article 100791. https://doi.org/10.1016/j.jbc.2021.100791 |
[55] | Nosov, G., Kahms, M. and Klingauf, J. (2020) The Decade of Super-Resolution Microscopy of the Presynapse. Frontiers in Synaptic Neuroscience, 12, Article 32. https://doi.org/10.3389/fnsyn.2020.00032 |