|
可切除NSCLC围手术期全程免疫治疗研究进展
|
Abstract:
最新流行病学数据显示,肺癌已超越乳腺癌再次跃居全球恶性肿瘤发病首位。在可切除非小细胞肺癌的临床实践中,术后复发难题始终困扰着医患双方。统计数据显示,仅接受手术治疗的早期患者中,6%~11%会出现局部复发,23%~30%面临远处转移风险。当病情进展至III期时,术后五年复发率更是攀升至60%左右,这一严峻现状凸显了传统治疗模式的局限性。近年来兴起的围手术期全程免疫疗法为破解这一困境提供了新思路,该方案通过术前阶段调节机体免疫微环境,促进免疫系统精准识别并清除肿瘤细胞,术后持续巩固免疫应答,有效清除潜在残留病灶,从而显著降低复发概率并延长患者生存期。值得注意的是,这种新型治疗策略的出现为改善患者预后开辟了新路径,其作用机制涉及肿瘤免疫循环的重建与维持,这对优化现有治疗体系具有深远影响。随着相关临床研究的深入,围术期免疫治疗的时序安排、用药方案及疗效预测等关键问题正逐步明晰,这些突破性进展不仅为个体化治疗提供了理论支撑,更为重要的是将推动肺癌治疗模式从单一外科干预向多学科协作的精准医疗转型。深入探讨这种治疗模式的最新研究进展,不仅能为临床决策提供循证依据,更有助于推动肺癌诊疗体系的优化升级,最终使更多患者获得生存获益。
The latest epidemiological data show that lung cancer has surpassed breast cancer to become the most commonly diagnosed malignant tumor globally. In the clinical practice of resectable non-small cell lung cancer, postoperative recurrence remains a persistent challenge for both physicians and patients. Statistics indicate that among early-stage patients treated with surgery alone, 6%~11% experience local recurrence, and 23%~30% face the risk of distant metastasis. When the disease progresses to stage III, the five-year postoperative recurrence rate soars to approximately 60%. This grim reality highlights the limitations of traditional treatment modalities. In recent years, the emerging comprehensive perioperative immunotherapy has provided a new solution to this dilemma. This approach involves modulating the immune microenvironment before surgery to enhance the immune system’s ability to accurately identify and eliminate tumor cells, and then consolidating the immune response after surgery to effectively clear any residual disease. This significantly reduces the recurrence rate and extends patient survival. Notably, the emergence of this novel treatment strategy has opened up a new path for improving patient prognosis, with its mechanism involving the reconstruction and maintenance of the tumor immune cycle. This has far-reaching implications for optimizing the existing treatment system. As relevant clinical research progresses, key issues such as the timing of perioperative immunotherapy, drug regimens, and efficacy prediction are becoming clearer. These breakthroughs not only provide theoretical support for personalized treatment but more importantly, they will drive the transformation of lung cancer treatment from a single surgical intervention to a multidisciplinary collaborative precision medicine model. Delving into the latest research progress of this treatment model not only provides
[1] | Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834 |
[2] | 郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. |
[3] | Garitaonaindia, Y., Aguado-Noya, R., Garcia-Grande, A., Cordoba, M., Coronado Albi, M.J., Campo Cañaveral, J.L., et al. (2023) Monitoring with Circulating Tumor Cells in the Perioperative Setting of Patients with Surgically Treated Stages I-IIIA NSCLC. Translational Lung Cancer Research, 12, 1414-1424. https://doi.org/10.21037/tlcr-22-827 |
[4] | Guo, H., Zhang, J., Qin, C., Yan, H., Luo, X. and Zhou, H. (2024) Advances and Challenges of First-Line Immunotherapy for Non-Small Cell Lung Cancer: A Review. Medicine, 103, e36861. https://doi.org/10.1097/md.0000000000036861 |
[5] | Chaft, J.E., Rimner, A., Weder, W., Azzoli, C.G., Kris, M.G. and Cascone, T. (2021) Evolution of Systemic Therapy for Stages I-III Non-Metastatic Non-Small-Cell Lung Cancer. Nature Reviews Clinical Oncology, 18, 547-557. https://doi.org/10.1038/s41571-021-00501-4 |
[6] | Mazieres, J., Drilon, A., Lusque, A., Mhanna, L., Cortot, A.B., Mezquita, L., et al. (2019) Immune Checkpoint Inhibitors for Patients with Advanced Lung Cancer and Oncogenic Driver Alterations: Results from the IMMUNOTARGET Registry. Annals of Oncology, 30, 1321-1328. https://doi.org/10.1093/annonc/mdz167 |
[7] | Odintsov, I. and Sholl, L.M. (2024) Prognostic and Predictive Biomarkers in Non-Small Cell Lung Carcinoma. Pathology, 56, 192-204. https://doi.org/10.1016/j.pathol.2023.11.006 |
[8] | Demicheli, R., Fornili, M., Ambrogi, F., Higgins, K., Boyd, J.A., Biganzoli, E., et al. (2012) Recurrence Dynamics for Non-Small-Cell Lung Cancer: Effect of Surgery on the Development of Metastases. Journal of Thoracic Oncology, 7, 723-730. https://doi.org/10.1097/jto.0b013e31824a9022 |
[9] | Reck, M., Remon, J. and Hellmann, M.D. (2022) First-Line Immunotherapy for Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 40, 586-597. https://doi.org/10.1200/jco.21.01497 |
[10] | Topalian, S.L., Taube, J.M. and Pardoll, D.M. (2020) Neoadjuvant Checkpoint Blockade for Cancer Immunotherapy. Science, 367, eaax0182. https://doi.org/10.1126/science.aax0182 |
[11] | Miao, D., Zhao, J., Han, Y., Zhou, J., Li, X., Zhang, T., et al. (2023) Management of Locally Advanced Non‐Small Cell Lung Cancer: State of the Art and Future Directions. Cancer Communications, 44, 23-46. https://doi.org/10.1002/cac2.12505 |
[12] | Shu, C.A. and Cascone, T. (2021) What Is NEO? Chemoimmunotherapy in the Neoadjuvant Setting for Resectable Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 39, 2855-2858. https://doi.org/10.1200/jco.21.01446 |
[13] | Asamura, H., Nishimura, K.K., Giroux, D.J., Chansky, K., Hoering, A., Rusch, V., et al. (2023) IASLC Lung Cancer Staging Project: The New Database to Inform Revisions in the Ninth Edition of the TNM Classification of Lung Cancer. Journal of Thoracic Oncology, 18, 564-575. https://doi.org/10.1016/j.jtho.2023.01.088 |
[14] | 中华医学会肿瘤学分会. 中华医学会肺癌临床诊疗指南(2024版) [J]. 中华医学杂志, 2024, 104(34): 3175-3213. |
[15] | 陈越, 刘颖, 蔡若雪, 等. 可切除非小细胞肺癌围术期全程免疫治疗模式的兴起[J]. 中国肿瘤外科杂志, 2023, 15(6): 591-598. |
[16] | Provencio, M., Nadal, E., Insa, A., García Campelo, R., Casal, J., Dómine, M., et al. (2024) Perioperative Chemotherapy and Nivolumab in Non-Small-Cell Lung Cancer (NADIM): 5-Year Clinical Outcomes from a Multicentre, Single-Arm, Phase 2 Trial. The Lancet Oncology, 25, 1453-1464. https://doi.org/10.1016/s1470-2045(24)00498-4 |
[17] | Provencio, M., Nadal, E., González-Larriba, J.L., Martínez-Martí, A., Bernabé, R., Bosch-Barrera, J., et al. (2023) Perioperative Nivolumab and Chemotherapy in Stage III Non-Small-Cell Lung Cancer. New England Journal of Medicine, 389, 504-513. https://doi.org/10.1056/nejmoa2215530 |
[18] | Heymach, J.V., Mitsudomi, T., Harpole, D., Aperghis, M., Jones, S., Mann, H., et al. (2022) Design and Rationale for a Phase III, Double-Blind, Placebo-Controlled Study of Neoadjuvant Durvalumab + Chemotherapy Followed by Adjuvant Durvalumab for the Treatment of Patients with Resectable Stages II and III Non-Small-Cell Lung Cancer: The AEGEAN Trial. Clinical Lung Cancer, 23, e247-e251. https://doi.org/10.1016/j.cllc.2021.09.010 |
[19] | Heymach, J., Reck, M., Mitsudomi, T., Taube, J.M., Spira, A.I., Chaft, J.E., et al. (2024) Outcomes with Perioperative Durvalumab (D) in Pts with Resectable NSCLC and Baseline N2 Lymph Node Involvement (N2 R-NSCLC): An Exploratory Subgroup Analysis of Aegean. Journal of Clinical Oncology, 42, 8011-8011. https://doi.org/10.1200/jco.2024.42.16_suppl.8011 |
[20] | Wakelee, H., Liberman, M., Kato, T., Tsuboi, M., Lee, S., Gao, S., et al. (2023) Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. New England Journal of Medicine, 389, 491-503. https://doi.org/10.1056/nejmoa2302983 |
[21] | Spicer, J.D., Garassino, M.C., Wakelee, H., Liberman, M., Kato, T., Tsuboi, M., et al. (2024) Neoadjuvant Pembrolizumab Plus Chemotherapy Followed by Adjuvant Pembrolizumab Compared with Neoadjuvant Chemotherapy Alone in Patients with Early-Stage Non-Small-Cell Lung Cancer (KEYNOTE-671): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet, 404, 1240-1252. https://doi.org/10.1016/s0140-6736(24)01756-2 |
[22] | Lu, S., Zhang, W., Wu, L., Wang, W., Zhang, P., Fang, W., et al. (2024) Perioperative Toripalimab Plus Chemotherapy for Patients with Resectable Non-Small Cell Lung Cancer: The Neotorch Randomized Clinical Trial. JAMA, 331, 201-211. https://doi.org/10.1001/jama.2023.24735 |
[23] | Yue, D., Wang, W., Liu, H., et al. (2024) Perioperative Tislelizumab Plus Neoadjuvant Chemotherapy for Patients with Resectable Non-Small-Cell Lung Cancer (RATIONALE-315): An Interim Analysis of a Randomised Clinical Trial. The Lancet Respiratory Medicine, 13, 119-129. |
[24] | Yan, W., Zhong, W., Liu, Y., Chen, Q., Xing, W., Zhang, Q., et al. (2023) Adebrelimab (SHR-1316) in Combination with Chemotherapy as Perioperative Treatment in Patients with Resectable Stage II to III Nsclcs: An Open-Label, Multicenter, Phase 1b Trial. Journal of Thoracic Oncology, 18, 194-203. https://doi.org/10.1016/j.jtho.2022.09.222 |
[25] | Cascone, T., Awad, M.M., Spicer, J.D., He, J., Lu, S., Sepesi, B., et al. (2024) Perioperative Nivolumab in Resectable Lung Cancer. New England Journal of Medicine, 390, 1756-1769. https://doi.org/10.1056/nejmoa2311926 |
[26] | Mayenga, M., Pedroso, A.R., Ferreira, M., Gille, T., Pereira Catarata, M.J. and Duchemann, B. (2024) The Checkmate 816 Trial: A Milestone in Neoadjuvant Chemoimmunotherapy of Nonsmall Cell Lung Cancer. Breathe, 20, Article ID: 240044. https://doi.org/10.1183/20734735.0044-2024 |
[27] | Forde, P.M., Peters, S., Donington, J., Meadows-Shropshire, S., Tran, P., Lucherini, S., et al. (2024) PL02.08 Perioperative vs Neoadjuvant Nivolumab for Resectable NSCLC: Patient-Level Data Analysis of Checkmate 77T vs Checkmate 816. Journal of Thoracic Oncology, 19, S2. https://doi.org/10.1016/j.jtho.2024.09.014 |
[28] | Gao, S., Li, N., Gao, S., Xue, Q., Ying, J., Wang, S., et al. (2020) Neoadjuvant PD-1 Inhibitor (Sintilimab) in Nsclc. Journal of Thoracic Oncology, 15, 816-826. https://doi.org/10.1016/j.jtho.2020.01.017 |
[29] | Zhao, Z., Liu, S., Zhou, T., Chen, G., Long, H., Su, X., et al. (2024) Stereotactic Body Radiotherapy with Sequential Tislelizumab and Chemotherapy as Neoadjuvant Therapy in Patients with Resectable Non-Small-Cell Lung Cancer in China (SACTION01): A Single-Arm, Single-Centre, Phase 2 Trial. The Lancet Respiratory Medicine, 12, 988-996. https://doi.org/10.1016/s2213-2600(24)00215-7 |
[30] | Tong, B.C., Gu, L., Wang, X., Wigle, D.A., Phillips, J.D., Harpole, D.H., et al. (2022) Perioperative Outcomes of Pulmonary Resection after Neoadjuvant Pembrolizumab in Patients with Non-Small Cell Lung Cancer. The Journal of Thoracic and Cardiovascular Surgery, 163, 427-436. https://doi.org/10.1016/j.jtcvs.2021.02.099 |
[31] | Duan, H., Shao, C., Luo, Z., Wang, T., Tong, L., Liu, H., et al. (2024) Perioperative Sintilimab and Neoadjuvant Anlotinib Plus Chemotherapy for Resectable Non-Small-Cell Lung Cancer: A Multicentre, Open-Label, Single-Arm, Phase 2 Trial (TD-NeoFOUR Trial). Signal Transduction and Targeted Therapy, 9, Article No. 296. https://doi.org/10.1038/s41392-024-01992-0 |
[32] | Chaft, J.E., Oezkan, F., Kris, M.G., Bunn, P.A., Wistuba, I.I., Kwiatkowski, D.J., et al. (2022) Neoadjuvant Atezolizumab for Resectable Non-Small Cell Lung Cancer: An Open-Label, Single-Arm Phase II Trial. Nature Medicine, 28, 2155-2161. https://doi.org/10.1038/s41591-022-01962-5 |