|
IL-36在结缔组织病相关间质性肺疾病患者血清中的表达水平及临床意义
|
Abstract:
目的:通过检测原发性干燥综合征、系统性硬化症以及类风湿关节炎(rheumatoid arthritis, RA)等结缔组织病相关间质性肺疾病(connective tissue disease associated interstitial lung disease, CTD-ILD)患者血清中白细胞介素-36 (interleukin-36, IL-36) (包括IL-36α,IL-36β,IL-36γ,IL-36Ra和IL-38)的表达水平,评估IL-36作为CTD-ILD潜在生物标志物的价值,为CTD-ILD的早期筛查、分层管理及靶向治疗提供新型生物标志物筛选策略和探索发病机制提供理论支撑。方法:本研究纳入2024年5~12月湖北民族大学附属民大医院风湿免疫科确诊的111例CTD患者,依据是否合并间质性肺疾病(interstitial lung disease, ILD),将患者分为CTD-ILD组(56例)和结缔组织病未合并间质性肺疾病(connective tissue disease-non interstitial lung disease, CTD-NILD)组(55例);同时纳入55名同期健康体检者作为健康对照组。采用酶联免疫吸附试验检测各组的血清IL-36表达水平,并收集所有研究对象的一般临床资料,以及CTD患者的实验室检验结果和肺高分辨率计算机断层扫描结果。采用IBM SPSS Statistics 27.0统计软件对所有数据进行统计分析。结果:(1) IL-36α、IL-36β、IL-36γ、IL-38在CTD患者血清中的表达水平均高于健康人群,差异均具有统计学意义(P < 0.05);IL-36Ra在CTD患者血清中的表达水平低于健康人群,差异具有统计学意义(P < 0.05)。(2) IL-36β、IL-36γ、IL-38在CTD-ILD患者血清中的表达水平均高于CTD-NILD患者,差异均有统计学意义(P < 0.05);IL-36Ra在CTD-ILD患者血清中的表达水平低于CTD-NILD患者,差异有统计学意义(P < 0.05)。通过受试者工作特征曲线分析得知,血清IL-36β、IL-38、IL-36β + IL-38从CTD中识别出ILD的曲线下面积分别为0.780、0.734、0.855,特异度分别为96.4%、92.7%、76.4%,敏感度分别为48.2%、44.6%、85.7%。(3) CTD-ILD患者的血清IL-36Ra表达水平与血沉呈负相关(r = ?0.352, P = 0.008);结论:(1) 血清IL-36β、IL-38可能是诊断CTD-ILD的潜在生物标志物,且二者联合诊断可明显提高敏感度。(2) IL-36激动剂和受体拮抗剂的失衡可能在CTD及其相关ILD的病理生理过程中发挥调控作用。
Objective: By measuring serum levels of interleukin-36 (IL-36) isoforms (including IL-36α, IL-36β, IL-36γ, IL-36Ra, and IL-38) in patients with connective tissue disease-associated interstitial lung disease (CTD-ILD)—specifically primary Sj?gren’s syndrome, systemic sclerosis, and rheumatoid arthritis (RA)—this study aims to evaluate the value of IL-36 as a potential biomarker, thereby providing novel screening strategies for early detection, stratified management, and targeted therapy of CTD-ILD, while also advancing mechanistic insights into its pathogenesis. Methods: This study enrolled 111 patients with CTD diagnosed in the Department of Rheumatology and Immunology at Minda Hospital of Hubei Minzu University between May and December 2024. Participants were stratified into two groups based on interstitial lung disease (ILD) comorbidity status: the CTD-ILD group (56 cases) and the connective tissue disease-non interstitial lung disease (CTD-NILD) group (55
[1] | Shao, T., Shi, X., Yang, S., Zhang, W., Li, X., Shu, J., et al. (2021) Interstitial Lung Disease in Connective Tissue Disease: A Common Lesion with Heterogeneous Mechanisms and Treatment Considerations. Frontiers in Immunology, 12, Article 684699. https://doi.org/10.3389/fimmu.2021.684699 |
[2] | Wijsenbeek, M., Suzuki, A. and Maher, T.M. (2022) Interstitial Lung Diseases. The Lancet, 400, 769-786. https://doi.org/10.1016/s0140-6736(22)01052-2 |
[3] | 石青, 杨明夏. 间质性肺疾病合并肺癌的研究进展[J]. 临床肺科杂志, 2023, 28(8): 1251-1255. |
[4] | Wells, A.U. (2021) New Insights into the Treatment of CTD-ILD. Nature Reviews Rheumatology, 17, 79-80. https://doi.org/10.1038/s41584-020-00567-x |
[5] | Sun, D., Wang, Y., Liu, Q., Wang, T., Li, P., Jiang, T., et al. (2022) Prediction of Long-Term Mortality by Using Machine Learning Models in Chinese Patients with Connective Tissue Disease-Associated Interstitial Lung Disease. Respiratory Research, 23, Article No. 4. https://doi.org/10.1186/s12931-022-01925-x |
[6] | Chen, L., Zhu, M., Lu, H., Yang, T., Li, W., Zhang, Y., et al. (2022) Quantitative Evaluation of Disease Severity in Connective Tissue Disease-Associated Interstitial Lung Disease by Dual-Energy Computed Tomography. Respiratory Research, 23, Article No. 47. https://doi.org/10.1186/s12931-022-01972-4 |
[7] | Xu, L., Wang, F. and Luo, F. (2022) Rituximab for the Treatment of Connective Tissue Disease-Associated Interstitial Lung Disease: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 13, Article 1019915. https://doi.org/10.3389/fphar.2022.1019915 |
[8] | Neurath, M.F. (2020) IL-36 in Chronic Inflammation and Cancer. Cytokine & Growth Factor Reviews, 55, 70-79. https://doi.org/10.1016/j.cytogfr.2020.06.006 |
[9] | Han, Y., Huard, A., Mora, J., da Silva, P., Brüne, B. and Weigert, A. (2020) IL-36 Family Cytokines in Protective versus Destructive Inflammation. Cellular Signalling, 75, Article ID: 109773. https://doi.org/10.1016/j.cellsig.2020.109773 |
[10] | Elias, M., Zhao, S., Le, H.T., Wang, J., Neurath, M.F., Neufert, C., et al. (2021) IL-36 in Chronic Inflammation and Fibrosis—Bridging the Gap? Journal of Clinical Investigation, 131, e144336. https://doi.org/10.1172/jci144336 |
[11] | Xu, Z., Yuan, X., Gao, Q., Li, Y. and Li, M. (2020) Interleukin-38 Overexpression Prevents Bleomycin-Induced Mouse Pulmonary Fibrosis. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394, 391-399. https://doi.org/10.1007/s00210-020-01920-3 |
[12] | Chen, W., Yu, X., Yuan, X., Chen, B., Cai, N., Zeng, S., et al. (2021) The Role of IL-36 in the Pathophysiological Processes of Autoimmune Diseases. Frontiers in Pharmacology, 12, Article 727956. https://doi.org/10.3389/fphar.2021.727956 |
[13] | Zhang, Q., Guo, L., Song, X., Lv, C., Tang, P., Li, Y., et al. (2022) Serum IL-36 Cytokines Levels in Idiopathic Pulmonary Fibrosis and Connective Tissue Disease-Associated Interstitial Lung Diseases. Clinica Chimica Acta, 530, 8-12. https://doi.org/10.1016/j.cca.2022.02.015 |
[14] | Zheng, W., Hu, X., Zou, M., Hu, N., Song, W., Wang, R., et al. (2022) Plasma Il-36α and Il-36γ as Potential Biomarkers in Interstitial Lung Disease Associated with Rheumatoid Arthritis: A Pilot Study in the Chinese Population. Inflammation, 46, 285-296. https://doi.org/10.1007/s10753-022-01733-x |
[15] | van den Hoogen, F., Khanna, D., Fransen, J., Johnson, S.R., Baron, M., Tyndall, A., et al. (2013) 2013 Classification Criteria for Systemic Sclerosis: An American College of Rheumatology/European League against Rheumatism Collaborative Initiative. Annals of the Rheumatic Diseases, 72, 1747-1755. https://doi.org/10.1136/annrheumdis-2013-204424 |
[16] | Aletaha, D., Neogi, T., Silman, A.J., Funovits, J., Felson, D.T., Bingham, C.O., et al. (2010) 2010 Rheumatoid Arthritis Classification Criteria: An American College of Rheumatology/European League against Rheumatism Collaborative Initiative. Annals of the Rheumatic Diseases, 69, 1580-1588. https://doi.org/10.1136/ard.2010.138461 |
[17] | Shiboski, C.H., Shiboski, S.C., Seror, R., Criswell, L.A., Labetoulle, M., Lietman, T.M., et al. (2016) 2016 American College of Rheumatology/European League against Rheumatism Classification Criteria for Primary Sjögren’s Syndrome: A Consensus and Data‐Driven Methodology Involving Three International Patient Cohorts. Arthritis & Rheumatology, 69, 35-45. https://doi.org/10.1002/art.39859 |
[18] | 中国医师协会风湿免疫科医师分会风湿病相关肺血管/间质病学组, 国家风湿病数据中心. 2018中国结缔组织病相关间质性肺病诊断和治疗专家共识[J]. 中华内科杂志, 2018, 57(8): 558-565. |
[19] | Zhou, A., Tang, H., Peng, W., Wang, Y., Tang, X., Yang, H., et al. (2023) KL-6 Levels in the Connective Tissue Disease Population: Typical Values and Potential Confounders—A Retrospective, Real-World Study. Frontiers in Immunology, 14, Article 1098602. https://doi.org/10.3389/fimmu.2023.1098602 |
[20] | Mira-Avendano, I., Abril, A., Burger, C.D., Dellaripa, P.F., Fischer, A., Gotway, M.B., et al. (2019) Interstitial Lung Disease and Other Pulmonary Manifestations in Connective Tissue Diseases. Mayo Clinic Proceedings, 94, 309-325. https://doi.org/10.1016/j.mayocp.2018.09.002 |
[21] | Broens, B., Duitman, J., Zwezerijnen, G.J.C., Nossent, E.J., van der Laken, C.J. and Voskuyl, A.E. (2022) Novel Tracers for Molecular Imaging of Interstitial Lung Disease: A State of the Art Review. Autoimmunity Reviews, 21, Article ID: 103202. https://doi.org/10.1016/j.autrev.2022.103202 |
[22] | Richeldi, L., Collard, H.R. and Jones, M.G. (2017) Idiopathic Pulmonary Fibrosis. The Lancet, 389, 1941-1952. https://doi.org/10.1016/s0140-6736(17)30866-8 |
[23] | Mittoo, S., Gelber, A.C., Christopher-Stine, L., Horton, M.R., Lechtzin, N. and Danoff, S.K. (2009) Ascertainment of Collagen Vascular Disease in Patients Presenting with Interstitial Lung Disease. Respiratory Medicine, 103, 1152-1158. https://doi.org/10.1016/j.rmed.2009.02.009 |
[24] | Wells, A.U. and Denton, C.P. (2014) Interstitial Lung Disease in Connective Tissue Disease—Mechanisms and Management. Nature Reviews Rheumatology, 10, 728-739. https://doi.org/10.1038/nrrheum.2014.149 |
[25] | 何明欣, 张华, 周向东, 等. 白细胞介素-1受体相关激酶通过TLR-4/MyD88信号通路调控内毒素诱导的气道黏液高分泌[J]. 中国呼吸与危重监护杂志, 2022, 21(1): 50-54. |
[26] | Ngo, V.L., Kuczma, M., Maxim, E. and Denning, T.L. (2021) IL‐36 Cytokines and Gut Immunity. Immunology, 163, 145-154. https://doi.org/10.1111/imm.13310 |
[27] | 汪存艺, 胡济安, 施洁珺. 白介素-36在关节炎性疾病中的作用[J]. 浙江大学学报(医学版), 2023, 52(2): 249-259. |
[28] | 杨薇, 钟波. IL-36细胞因子在炎性疾病与肿瘤中的作用机制[J]. 中国细胞生物学学报, 2022, 44(4): 737-746. |
[29] | Sachen, K.L., Arnold Greving, C.N. and Towne, J.E. (2022) Role of IL-36 Cytokines in Psoriasis and Other Inflammatory Skin Conditions. Cytokine, 156, Article ID: 155897. https://doi.org/10.1016/j.cyto.2022.155897 |
[30] | Ciccia, F., Accardo-Palumbo, A., Alessandro, R., Alessandri, C., Priori, R., Guggino, G., et al. (2015) Interleukin-36α Axis Is Modulated in Patients with Primary Sjögren’s Syndrome. Clinical and Experimental Immunology, 181, 230-238. https://doi.org/10.1111/cei.12644 |