全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimizing Low-Level Light Therapy for Skin Rejuvenation: Efficacy of Wavelengths and Treatment Parameters in Collagen Synthesis and Aging Signs

DOI: 10.4236/mri.2025.142005, PP. 64-78

Keywords: Low-Level Light Therapy, LED Therapy, Skin Rejuvenation, Collagen Synthesis, Photobiomodulation, Signs of Aging, Treatment Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Low-level light therapy (LLLT), particularly using light-emitting diode (LED) devices, has been an effective and non-surgical option for skin rejuvenation, treating signs of aging such as wrinkles, collagen loss, and pigmentation. Despite promising clinical outcomes, variability in treatment parameters such as wavelength, power density, fluence, and treatment regimens remains a challenge in optimizing the therapy for optimal results. Recent studies, including a prospective, randomized, placebo-controlled, double-blinded, and split-face clinical trial by Lee et al. (2007), have demonstrated significant improvements in wrinkle reduction and skin elasticity using 830 nm and 633 nm LED wavelengths. These findings highlight the importance of wavelength selection and treatment protocols in achieving consistent and effective outcomes. This biphasic dose-response characteristic of photobiomodulation suggests that treatment outcomes, particularly in collagen synthesis and the reduction of aging signs, can be optimized by adjusting these parameters. Red and near-infrared wavelength applications, in particular, have been shown to stimulate collagen synthesis and enhance skin texture. Inconsistency in device specification, treatment protocols, and study design nevertheless still precludes standardization of treatment protocols. However, inconsistencies in device specifications, treatment protocols, and study design still preclude standardization of treatment protocols. Based on the literature present, there is moderate evidence for the efficacy of LLLT for skin rejuvenation, but further, randomized controlled trials involving larger populations and better design are required to help refine protocols and establish standardized treatment guidelines. As LED technology continues to evolve, it has vast potential to revolutionize skin care by offering cheap, non-invasive treatments for skin aging.

References

[1]  Couturaud, V., Le Fur, M., Pelletier, M. and Granotier, F. (2023) Reverse Skin Aging Signs by Red Light Photobiomodulation. Skin Research and Technology, 29, e13391.
https://doi.org/10.1111/srt.13391
[2]  Austin, E., Geisler, A.N., Nguyen, J., Kohli, I., Hamzavi, I., Lim, H.W., et al. (2021) Visible Light. Part I: Properties and Cutaneous Effects of Visible Light. Journal of the American Academy of Dermatology, 84, 1219-1231.
https://doi.org/10.1016/j.jaad.2021.02.048
[3]  Avci, P., Gupta, A., Sadasivam, M., Vecchio, D., Pam, Z., Pam, N. and Hamblin, M.R. (2013). Low-Level Laser (Light) Therapy (LLLT) in Skin: Stimulating, Healing, Restoring. Seminars in Cutaneous Medicine and Surgery, 32, 41-52.
[4]  Lee, S.Y., Park, K., Choi, J., Kwon, J., Lee, D.R., Shin, M.S., et al. (2007) A Prospective, Randomized, Placebo-Controlled, Double-Blinded, and Split-Face Clinical Study on LED Phototherapy for Skin Rejuvenation: Clinical, Profilometric, Histologic, Ultrastructural, and Biochemical Evaluations and Comparison of Three Different Treatment Settings. Journal of Photochemistry and Photobiology B: Biology, 88, 51-67.
https://doi.org/10.1016/j.jphotobiol.2007.04.008
[5]  Glass, G.E. (2021) Photobiomodulation: The Clinical Applications of Low-Level Light Therapy. Aesthetic Surgery Journal, 41, 723-738.
https://doi.org/10.1093/asj/sjab025
[6]  Mester, E., Szende, B. and Gärtner, P. (1968) The Effect of Laser Beams on the Growth of Hair in Mice. Radiobiologia, Radiotherapia, 9, 621-626.
[7]  Whelan, H.T., Smits, R.L., Buchman, E.V., Whelan, N.T., Turner, S.G., Margolis, D.A., et al. (2001) Effect of NASA Light-Emitting Diode Irradiation on Wound Healing. Journal of Clinical Laser Medicine & Surgery, 19, 305-314.
https://doi.org/10.1089/104454701753342758
[8]  Ngoc, L.T.N., Moon, J. and Lee, Y. (2022) Utilization of Light‐Emitting Diodes for Skin Therapy: Systematic Review and Meta‐analysis. Photodermatology, Photoimmunology & Photomedicine, 39, 303-317.
https://doi.org/10.1111/phpp.12841
[9]  Cohen, M., Austin, E., Masub, N., Kurtti, A., George, C. and Jagdeo, J. (2021) Home-Based Devices in Dermatology: A Systematic Review of Safety and Efficacy. Archives of Dermatological Research, 314, 239-246.
https://doi.org/10.1007/s00403-021-02231-0
[10]  Mineroff, J., Maghfour, J., Ozog, D.M., Lim, H.W., Kohli, I. and Jagdeo, J. (2024) Photobiomodulation CME Part II: Clinical Applications in Dermatology. Journal of the American Academy of Dermatology, 91, 805-815.
https://doi.org/10.1016/j.jaad.2023.10.074
[11]  Li, W., Seo, I., Kim, B., Fassih, A., Southall, M.D. and Parsa, R. (2021) Low‐Level Red Plus Near Infrared Lights Combination Induces Expressions of Collagen and Elastin in Human Skin in vitro. International Journal of Cosmetic Science, 43, 311-320.
https://doi.org/10.1111/ics.12698
[12]  Seaton, E.D., Mouser, P.E., Charakida, A., Alam, S., Seldon, P.E. and Chu, A.C. (2006) Investigation of the Mechanism of Action of Nonablative Pulsed-Dye Laser Therapy in Photorejuvenation and Inflammatory Acne Vulgaris. British Journal of Dermatology, 155, 748-755.
https://doi.org/10.1111/j.1365-2133.2006.07429.x
[13]  Takema, Y., Yorimoto, Y., Kawai, M. and Imokawa, G. (1994) Age-Related Changes in the Elastic Properties and Thickness of Human Facial Skin. British Journal of Dermatology, 131, 641-648.
https://doi.org/10.1111/j.1365-2133.1994.tb04975.x
[14]  Fisher, G.J., Varani, J. and Voorhees, J.J. (2008) Looking Older: Fibroblast Collapse and Therapeutic Implications. Archives of Dermatology, 144, 666-672.
https://doi.org/10.1001/archderm.144.5.666
[15]  Weiss, R.A., McDaniel, D.H., Geronemus, R.G. and Weiss, M.A. (2005) Clinical Trial of a Novel Non‐Thermal LED Array for Reversal of Photoaging: Clinical, Histologic, and Surface Profilometric Results. Lasers in Surgery and Medicine, 36, 85-91.
https://doi.org/10.1002/lsm.20107
[16]  Barolet, D., Roberge, C.J., Auger, F.A., Boucher, A. and Germain, L. (2009) Regulation of Skin Collagen Metabolism in vitro Using a Pulsed 660 Nm LED Light Source: Clinical Correlation with a Single-Blinded Study. Journal of Investigative Dermatology, 129, 2751-2759.
https://doi.org/10.1038/jid.2009.186
[17]  Ablon, G. (2010) Combination 830-nm and 633-nm Light-Emitting Diode Phototherapy Shows Promise in the Treatment of Recalcitrant Psoriasis: Preliminary Findings. Photomedicine and Laser Surgery, 28, 141-146.
https://doi.org/10.1089/pho.2009.2484
[18]  Whitley, R.J., Kimberlin, D.W. and Roizman, B. (1998) Herpes Simplex Viruses. Clinical Infectious Diseases, 26, 541-553.
https://doi.org/10.1086/514600
[19]  Muñoz Sanchez, P.J., Capote Femenías, J.L., Díaz Tejeda, A. and Tunér, J. (2012) The Effect of 670-nm Low Laser Therapy on Herpes Simplex Type 1. Photomedicine and Laser Surgery, 30, 37-40.
https://doi.org/10.1089/pho.2011.3076
[20]  Landthaler, M., Haina, D. and Waidelich, W. (1983) Behandlung von Zoster, postzos-terischen Schmerzen und Herpes simplex recidivans in loco mit Laser-Licht. Fortschritte der Medizin, 101, 1039-1041.
[21]  Cios, A., Ciepielak, M., Szymański, Ł., Lewicka, A., Cierniak, S., Stankiewicz, W., et al. (2021) Effect of Different Wavelengths of Laser Irradiation on the Skin Cells. International Journal of Molecular Sciences, 22, 2437.
https://doi.org/10.3390/ijms22052437
[22]  Hamblin, M.R. (2017) Mechanisms and Applications of the Anti-Inflammatory Effects of Photobiomodulation. AIMS Biophysics, 4, 337-361.
https://doi.org/10.3934/biophy.2017.3.337
[23]  Zein, R., Selting, W. and Hamblin, M.R. (2018) Review of Light Parameters and Photobiomodulation Efficacy: Dive into Complexity. Journal of Biomedical Optics, 23, Article 120901.
https://doi.org/10.1117/1.jbo.23.12.120901
[24]  Jagdeo, J., Austin, E., Mamalis, A., Wong, C., Ho, D. and Siegel, D.M. (2018) Light‐Emitting Diodes in Dermatology: A Systematic Review of Randomized Controlled Trials. Lasers in Surgery and Medicine, 50, 613-628.
https://doi.org/10.1002/lsm.22791
[25]  Hashmi, J.T., Huang, Y., Sharma, S.K., Kurup, D.B., De Taboada, L., Carroll, J.D., et al. (2010) Effect of Pulsing in Low‐Level Light Therapy. Lasers in Surgery and Medicine, 42, 450-466.
https://doi.org/10.1002/lsm.20950
[26]  Huang, Y., Chen, A.C.-H., Carroll, J.D. and Hamblin, M.R. (2009) Biphasic Dose Response in Low Level Light Therapy. Dose-Response, 7, 358-383.
https://doi.org/10.2203/dose-response.09-027.hamblin
[27]  Flores Luna, G.L., de Andrade, A.L.M., Brassolatti, P., Bossini, P.S., de Freitas Anibal, F., Parizotto, N.A., et al. (2020) Biphasic Dose/Response of Photobiomodulation Therapy on Culture of Human Fibroblasts. Photobiomodulation, Photomedicine, and Laser Surgery, 38, 413-418.
https://doi.org/10.1089/photob.2019.4729
[28]  Serrage, H., Heiskanen, V., Palin, W.M., Cooper, P.R., Milward, M.R., Hadis, M., et al. (2019) Under the Spotlight: Mechanisms of Photobiomodulation Concentrating on Blue and Green Light. Photochemical & Photobiological Sciences, 18, 1877-1909.
https://doi.org/10.1039/c9pp00089e
[29]  Fekrazad, R., Asefi, S., Allahdadi, M. and Kalhori, K.A.M. (2016) Effect of Photobiomodulation on Mesenchymal Stem Cells. Photomedicine and Laser Surgery, 34, 533-542.
https://doi.org/10.1089/pho.2015.4029
[30]  Eduardo, F.P., Mehnert, D.U., Monezi, T.A., Zezell, D.M., Schubert, M.M., Eduardo, C.P., et al. (2007) Cultured Epithelial Cells Response to Phototherapy with Low Intensity Laser. Lasers in Surgery and Medicine, 39, 365-372.
https://doi.org/10.1002/lsm.20481
[31]  Soares, D.M., Ginani, F., Henriques, Á.G. and Barboza, C.A.G. (2013) Effects of Laser Therapy on the Proliferation of Human Periodontal Ligament Stem Cells. Lasers in Medical Science, 30, 1171-1174.
https://doi.org/10.1007/s10103-013-1436-9
[32]  Kreisler, M., Christoffers, A.B., Al‐Haj, H., Willershausen, B. and d’Hoedt, B. (2002) Low Level 809‐nm Diode Laser‐Induced in vitro Stimulation of the Proliferation of Human Gingival Fibroblasts. Lasers in Surgery and Medicine, 30, 365-369.
https://doi.org/10.1002/lsm.10060
[33]  Karu, T. (1987) Photobiological Fundamentals of Low-Power Laser Therapy. IEEE Journal of Quantum Electronics, 23, 1703-1717.
https://doi.org/10.1109/jqe.1987.1073236
[34]  Nie, F., Hao, S., Ji, Y., Zhang, Y., Sun, H., Will, M., et al. (2023) Biphasic Dose Response in the Anti-Inflammation Experiment of PBM. Lasers in Medical Science, 38, Article No. 66.
https://doi.org/10.1007/s10103-022-03664-3
[35]  Hawkins, D. and Abrahamse, H. (2006) Effect of Multiple Exposures of Low-Level Laser Therapy on the Cellular Responses of Wounded Human Skin Fibroblasts. Photomedicine and Laser Surgery, 24, 705-714.
https://doi.org/10.1089/pho.2006.24.705
[36]  Huang, Y., Sharma, S.K., Carroll, J. and Hamblin, M.R. (2011) Biphasic Dose Response in Low Level Light Therapy—An Update. Dose-Response, 9, 602-618.
https://doi.org/10.2203/dose-response.11-009.hamblin
[37]  Yamaura, M., Yao, M., Yaroslavsky, I., Cohen, R., Smotrich, M. and Kochevar, I.E. (2009) Low Level Light Effects on Inflammatory Cytokine Production by Rheumatoid Arthritis Synoviocytes. Lasers in Surgery and Medicine, 41, 282-290.
https://doi.org/10.1002/lsm.20766
[38]  Tatmatsu-Rocha, J.C., Ferraresi, C., Hamblin, M.R., Damasceno Maia, F., do Nascimento, N.R.F., Driusso, P., et al. (2016) Low-Level Laser Therapy (904nm) Can Increase Collagen and Reduce Oxidative and Nitrosative Stress in Diabetic Wounded Mouse Skin. Journal of Photochemistry and Photobiology B: Biology, 164, 96-102.
https://doi.org/10.1016/j.jphotobiol.2016.09.017
[39]  Migliario, M., Pittarella, P., Fanuli, M., Rizzi, M. and Renò, F. (2014) Laser-Induced Osteoblast Proliferation Is Mediated by ROS Production. Lasers in Medical Science, 29, 1463-1467.
https://doi.org/10.1007/s10103-014-1556-x
[40]  Fan, H., Tuo, H., Xie, Y., Ju, M., Sun, Y., Yang, Y., et al. (2024) Comparison of Blue Laser and Red Light-Emitting Diode-Mediated Aminolevulinic Acid-Based Photodynamic Therapy for Moderate and Severe Acne Vulgaris: A Prospective, Split-Face, Nonrandomized Controlled Study. Photodiagnosis and Photodynamic Therapy, 49, Article 104325.
https://doi.org/10.1016/j.pdpdt.2024.104325
[41]  Kleinpenning, M.M., Otero, M.E., van Erp, P.E.J., Gerritsen, M.J.P. and van de Kerkhof, P.C.M. (2011) Efficacy of Blue Light vs. Red Light in the Treatment of Psoriasis: A Double‐Blind, Randomized Comparative Study. Journal of the European Academy of Dermatology and Venereology, 26, 219-225.
https://doi.org/10.1111/j.1468-3083.2011.04039.x
[42]  Evers, A.W.M. (2016) Using the Placebo Effect: How Expectations and Learned Immune Function Can Optimize Dermatological Treatments. Experimental Dermatology, 26, 18-21.
https://doi.org/10.1111/exd.13158
[43]  Fan, L., Yin, R., Lan, T. and Hamblin, M.R. (2018) Photodynamic Therapy for Rosacea in Chinese Patients. Photodiagnosis and Photodynamic Therapy, 24, 82-87.
https://doi.org/10.1016/j.pdpdt.2018.08.005
[44]  Saldanha, I.J., Skelly, A.C., Ley, K.V., et al. (2022) Inclusion of Nonrandomized Studies of Interventions in Systematic Reviews of Intervention Effectiveness: An Update. Agency for Healthcare Research and Quality (US).
https://www.ncbi.nlm.nih.gov/books/NBK579970/
[45]  Paneth, N.S., Joyner, M.J. and Casadevall, A. (2022) The Fossilization of Randomized Clinical Trials. Journal of Clinical Investigation, 132, e158499.
https://doi.org/10.1172/jci158499Sadick, N.S., Weiss, R.A. and Goldman, M.P. (2009) Advances in Laser and Light Source Treatments. Dermatologic Clinics, 27, 105-113.
[46]  Sadick, N., Schecter, A. and Sigal, L. (2014) A Study to Determine the Efficacy of Combination LED Light Therapy (633 nm and 830 nm) in Facial Skin Rejuvenation. Journal of Cosmetic and Laser Therapy, 16, 208-213.
https://doi.org/10.3109/14764172.2014.942663
[47]  Goldberg, D.J. (2012) Laser Dermatology: Pearls and Problems. Wiley-Blackwell.
[48]  Berardesca, E., Farage, M. and Maibach, H. (2012) Sensitive Skin: An Overview. International Journal of Cosmetic Science, 35, 2-8.
https://doi.org/10.1111/j.1468-2494.2012.00754.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133