Graph burning is a model for describing the spread of influence in social networks and the burning number is a parameter used to describe the speed of information spread. In 2016, Bonato proposed a graph burning conjecture: For any connected graph
with order
, the burning number
. In this paper, we confirm the burning conjecture for octopus graph and bicyclic graph.
References
[1]
Bondy, J.A. and Murty, U.S.R. (2008) Graph Theory. GTM 244, Springer.
[2]
Bonato, A., Janssen, J. and Roshanbin, E. (2014) Burning a Graph as a Model of Social Contagion. In: Bonato, A., Graham, F. and Prałat, P., Eds., LectureNotesinComputerScience, Springer International Publishing, 13-22. https://doi.org/10.1007/978-3-319-13123-8_2
[3]
Bonato, A., Janssen, J. and Roshanbin, E. (2016) How to Burn a Graph. InternetMathematics, 12, 85-100. https://doi.org/10.1080/15427951.2015.1103339
[4]
Bonato, A. and Lidbetter, T. (2019) Bounds on the Burning Numbers of Spiders and Path-Forests. TheoreticalComputerScience, 794, 12-19. https://doi.org/10.1016/j.tcs.2018.05.035
[5]
Liu, H., Hu, X. and Hu, X. (2021) Burning Numbers of Path Forests and Spiders. BulletinoftheMalaysianMathematicalSciencesSociety, 44, 661-681. https://doi.org/10.1007/s40840-020-00969-w
[6]
Liu, H., Hu, X. and Hu, X. (2020) Burning Number of Caterpillars. DiscreteAppliedMathematics, 284, 332-340. https://doi.org/10.1016/j.dam.2020.03.062
[7]
Hiller, M., Koster, A.M.C.A. and Triesch, E. (2021) On the Burning Number of P-Caterpillars. In: Gentile, C., Stecca, G. and Ventura, P., Eds., AIROSpringerSeries, Springer International Publishing, 145-156. https://doi.org/10.1007/978-3-030-63072-0_12
[8]
Liu, H., Zhang, R. and Hu, X. (2019) Burning Number of Theta Graphs. AppliedMathematicsandComputation, 361, 246-257. https://doi.org/10.1016/j.amc.2019.05.031
[9]
Bonato, A., English, S., Kay, B. and Moghbel, D. (2021) Improved Bounds for Burning Fence Graphs. GraphsandCombinatorics, 37, 2761-2773. https://doi.org/10.1007/s00373-021-02390-x
[10]
Sim, K.A., Tan, T.S. and Wong, K.B. (2018) On the Burning Number of Generalized Petersen Graphs. BulletinoftheMalaysianMathematicalSciencesSociety, 41, 1657-1670. https://doi.org/10.1007/s40840-017-0585-6
[11]
Mitsche, D., Prałat, P. and Roshanbin, E. (2018) Burning Number of Graph Products. TheoreticalComputerScience, 746, 124-135. https://doi.org/10.1016/j.tcs.2018.06.036
[12]
Li, Y., Wu, J., Qin, X. and Wei, L. (2024) Characterization of $ Q $ Graph by the Burning Number. AIMSMathematics, 9, 4281-4293. https://doi.org/10.3934/math.2024211
[13]
Das, Sandip, Islam, S.S., Mitra, R.M. and Paul, S. (2023) Burning a Binary Tree and Its Generalization. arxiv:2308.02825.
[14]
Murakami, Y. (2024) The Burning Number Conjecture Is True for Trees without Degree-2 Vertices. GraphsandCombinatorics, 40, Article No. 82. https://doi.org/10.1007/s00373-024-02812-6