全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Note on the Burning Conjecture for Some Graphs

DOI: 10.4236/ojapps.2025.155080, PP. 1157-1167

Keywords: Graph Burning, Burning Number, Octopus Graph, Bicyclic Graph

Full-Text   Cite this paper   Add to My Lib

Abstract:

Graph burning is a model for describing the spread of influence in social networks and the burning number is a parameter used to describe the speed of information spread. In 2016, Bonato proposed a graph burning conjecture: For any connected graph G with order n , the burning number b( G ) n . In this paper, we confirm the burning conjecture for octopus graph and bicyclic graph.

References

[1]  Bondy, J.A. and Murty, U.S.R. (2008) Graph Theory. GTM 244, Springer.
[2]  Bonato, A., Janssen, J. and Roshanbin, E. (2014) Burning a Graph as a Model of Social Contagion. In: Bonato, A., Graham, F. and Prałat, P., Eds., Lecture Notes in Computer Science, Springer International Publishing, 13-22.
https://doi.org/10.1007/978-3-319-13123-8_2
[3]  Bonato, A., Janssen, J. and Roshanbin, E. (2016) How to Burn a Graph. Internet Mathematics, 12, 85-100.
https://doi.org/10.1080/15427951.2015.1103339
[4]  Bonato, A. and Lidbetter, T. (2019) Bounds on the Burning Numbers of Spiders and Path-Forests. Theoretical Computer Science, 794, 12-19.
https://doi.org/10.1016/j.tcs.2018.05.035
[5]  Liu, H., Hu, X. and Hu, X. (2021) Burning Numbers of Path Forests and Spiders. Bulletin of the Malaysian Mathematical Sciences Society, 44, 661-681.
https://doi.org/10.1007/s40840-020-00969-w
[6]  Liu, H., Hu, X. and Hu, X. (2020) Burning Number of Caterpillars. Discrete Applied Mathematics, 284, 332-340.
https://doi.org/10.1016/j.dam.2020.03.062
[7]  Hiller, M., Koster, A.M.C.A. and Triesch, E. (2021) On the Burning Number of P-Caterpillars. In: Gentile, C., Stecca, G. and Ventura, P., Eds., AIRO Springer Series, Springer International Publishing, 145-156.
https://doi.org/10.1007/978-3-030-63072-0_12
[8]  Liu, H., Zhang, R. and Hu, X. (2019) Burning Number of Theta Graphs. Applied Mathematics and Computation, 361, 246-257.
https://doi.org/10.1016/j.amc.2019.05.031
[9]  Bonato, A., English, S., Kay, B. and Moghbel, D. (2021) Improved Bounds for Burning Fence Graphs. Graphs and Combinatorics, 37, 2761-2773.
https://doi.org/10.1007/s00373-021-02390-x
[10]  Sim, K.A., Tan, T.S. and Wong, K.B. (2018) On the Burning Number of Generalized Petersen Graphs. Bulletin of the Malaysian Mathematical Sciences Society, 41, 1657-1670.
https://doi.org/10.1007/s40840-017-0585-6
[11]  Mitsche, D., Prałat, P. and Roshanbin, E. (2018) Burning Number of Graph Products. Theoretical Computer Science, 746, 124-135.
https://doi.org/10.1016/j.tcs.2018.06.036
[12]  Li, Y., Wu, J., Qin, X. and Wei, L. (2024) Characterization of $ Q $ Graph by the Burning Number. AIMS Mathematics, 9, 4281-4293.
https://doi.org/10.3934/math.2024211
[13]  Das, Sandip, Islam, S.S., Mitra, R.M. and Paul, S. (2023) Burning a Binary Tree and Its Generalization. arxiv:2308.02825.
[14]  Murakami, Y. (2024) The Burning Number Conjecture Is True for Trees without Degree-2 Vertices. Graphs and Combinatorics, 40, Article No. 82.
https://doi.org/10.1007/s00373-024-02812-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133