|
判别噪声条件下星型网络非n局域关联
|
Abstract:
现实情况下,理想的量子网络并不存在,更多的是含噪声的量子网络,在噪声情况下的量子网络会随着资源数量n的增加,其非n局域性会逐渐降低。而不同量子网络中的非多局域关联在抗噪声干扰方面表现不同。所以在本文中,单独研究了噪声星型网络的非局域性情况,计算出其不等式判据,并推导出在不同噪声情况下星型网络的非局域判断标准,由此可以判断出在给定噪声参数的情况下,不同资源数的星型网络的非局域性情况。
In reality, the ideal quantum network does not exist. Instead, what we have more often are quantum networks with noise. In a quantum network under noisy conditions, as the number n of resources increases, its non-n-locality will gradually decrease. Moreover, the non-multi-locality correlations in different quantum networks exhibit different performances in terms of resistance to noise interference. Therefore, in this paper, the non-locality situation of the noisy star-shaped quantum network is studied separately. The inequality criterion is calculated, and the non-locality judgment criteria for the star-shaped network under different noisy conditions are derived. Thus, it is possible to determine the non-locality situation of star-shaped networks with different numbers of resources under the given noise parameters.
[1] | Scarani, V. (2019) Bell Nonlocality. Oxford University Press. |
[2] | Wiseman, H.M., Jones, S.J. and Doherty, A.C. (2007) Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox. Physical Review Letters, 98, Article ID: 140402. https://doi.org/10.1103/physrevlett.98.140402 |
[3] | Pironio, S., Acín, A., Massar, S., de la Giroday, A.B., Matsukevich, D.N., Maunz, P., et al. (2010) Random Numbers Certified by Bell’s Theorem. Nature, 464, 1021-1024. https://doi.org/10.1038/nature09008 |
[4] | Colbeck, R. and Kent, A. (2011) Private Randomness Expansion with Untrusted Devices. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 095305. https://doi.org/10.1088/1751-8113/44/9/095305 |
[5] | Raussendorf, R. and Briegel, H.J. (2001) A One-Way Quantum Computer. Physical Review Letters, 86, 5188-5191. https://doi.org/10.1103/physrevlett.86.5188 |
[6] | Wehner, S., Elkouss, D. and Hanson, R. (2018) Quantum Internet: A Vision for the Road Ahead. Science, 362, aam9288. https://doi.org/10.1126/science.aam9288 |
[7] | Sangouard, N., Simon, C., de Riedmatten, H. and Gisin, N. (2011) Quantum Repeaters Based on Atomic Ensembles and Linear Optics. Reviews of Modern Physics, 83, 33-80. https://doi.org/10.1103/revmodphys.83.33 |
[8] | Hammerer, K., Sørensen, A.S. and Polzik, E.S. (2010) Quantum Interface between Light and Atomic Ensembles. Reviews of Modern Physics, 82, 1041-1093. https://doi.org/10.1103/revmodphys.82.1041 |
[9] | Wang, M., Xiang, Y., Kang, H., Han, D., Liu, Y., He, Q., et al. (2020) Deterministic Distribution of Multipartite Entanglement and Steering in a Quantum Network by Separable States. Physical Review Letters, 125, Article ID: 260506. https://doi.org/10.1103/physrevlett.125.260506 |
[10] | Mukherjee, K., Paul, B. and Sarkar, D. (2015) Correlations in n-Local Scenario. Quantum Information Processing, 14, 2025-2042. https://doi.org/10.1007/s11128-015-0971-7 |
[11] | Renou, M., Bäumer, E., Boreiri, S., Brunner, N., Gisin, N. and Beigi, S. (2019) Genuine Quantum Nonlocality in the Triangle Network. Physical Review Letters, 123, Article ID: 140401. https://doi.org/10.1103/physrevlett.123.140401 |
[12] | Yang, L., Qi, X. and Hou, J. (2021) Nonlocal Correlations in the Tree-Tensor-Network Configuration. Physical Review A, 104, Article ID: 042405. https://doi.org/10.1103/physreva.104.042405 |
[13] | Yang, L., Qi, X. and Hou, J. (2022) Multi-nonlocality and Detection of Multipartite Entanglements by Special Quantum Networks. Quantum Information Processing, 21, Article No. 305. https://doi.org/10.1007/s11128-022-03637-z |
[14] | Mukherjee, K. (2022) Detecting Nontrilocal Correlations in a Triangle Network. Physical Review A, 106, Article ID: 042206. https://doi.org/10.1103/physreva.106.042206 |
[15] | Tavakoli, A., Skrzypczyk, P., Cavalcanti, D. and Acín, A. (2014) Nonlocal Correlations in the Star-Network Configuration. Physical Review A, 90, Article ID: 062109. https://doi.org/10.1103/physreva.90.062109 |
[16] | Andreoli, F., Carvacho, G., Santodonato, L., Chaves, R. and Sciarrino, F. (2017) Maximal Qubit Violation of N-Locality Inequalities in a Star-Shaped Quantum Network. New Journal of Physics, 19, Article ID: 113020. https://doi.org/10.1088/1367-2630/aa8b9b |
[17] | Mukherjee, K., Chakrabarty, I. and Mylavarapu, G. (2023) Persistency of Non-n-Local Correlations in Noisy Linear Networks. Physical Review A, 107, Article ID: 032404. https://doi.org/10.1103/physreva.107.032404 |