全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种后修饰三维共价有机框架材料的合成及其质子导电性能的研究
Synthesis of a Post-Modified Three-Dimensional Covalent Organic Framework Material and the Study of Its Proton Conductivity Performance

DOI: 10.12677/amc.2025.132028, PP. 257-262

Keywords: 共价有机框架,后修饰,质子导电
Covalent Organic Frameworks
, Post-Modification, Proton Conductivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文首先按照文献合成了具有稳定结构但性能并不突出具有3D结构的TAPM-DHTA-COF,并以此为基础,通过后修饰的方法将磺酸基团引入到该COF的骨架上,将其命名为TAPM-DHTA-COF-SO3H,在对其进行结构表征的基础上,对比研究了两种COFs材料在相对湿度为98%时,不同温度下的质子导电性能。结果表明,当温度达到90℃时,TAPM-DHTA-COF-SO3H的质子传导率可以达到2.04 × 104 S?cm1,而TAPM-DHTA-COF的质子传导率仅为9.74 × 105 S?cm1。该制备方法不仅简单,并且通过该方法得到的材料具有较高的稳定性以及良好的质子导电性,使其在燃料电池领域中具有应用前景。
This paper first synthesized TAPM-DHTA-COF with a stable structure but not outstanding per- formance through literature-based methods, and based on this, introduced sulfonic acid groups onto the framework of this COF by post-modification, naming it TAPM-DHTA-COF-SO3H. On the basis of its structural characterization, the proton conductivity of the two COFs at different temperatures under a relative humidity of 98% was compared and studied. The results showed that when the temperature reached 90?C, the proton conductivity of TAPM-DHTA-COF-SO3H could reach 2.04 × 10?4 S?cm?1, while that of TAPM-DHTA-COF was only 9.74 × 10?5 S?cm?1. This preparation method is not only simple, but also the materials obtained by this method have high stability and good proton conductivity, making them have application prospects in the field of fuel cells.

References

[1]  Khoo, K.S., Chia, W.Y., Wang, K., Chang, C., Leong, H.Y., Maaris, M.N.B., et al. (2021) Development of Proton-Exchange Membrane Fuel Cell with Ionic Liquid Technology. Science of The Total Environment, 793, Article 148705.
https://doi.org/10.1016/j.scitotenv.2021.148705
[2]  Sahoo, R., Mondal, S., Pal, S.C., Mukherjee, D. and Das, M.C. (2021) Covalent‐Organic Frameworks (COFs) as Proton Conductors. Advanced Energy Materials, 11, Article 2102300.
https://doi.org/10.1002/aenm.202102300
[3]  Ke, Y., Yuan, W., Zhou, F., Guo, W., Li, J., Zhuang, Z., et al. (2021) A Critical Review on Surface-Pattern Engineering of Nafion Membrane for Fuel Cell Applications. Renewable and Sustainable Energy Reviews, 145, Article 110860.
https://doi.org/10.1016/j.rser.2021.110860
[4]  Li, P., Chen, J. and Tang, S. (2021) Ionic Liquid-Impregnated Covalent Organic Framework/Silk Nanofibril Composite Membrane for Efficient Proton Conduction. Chemical Engineering Journal, 415, Article 129021.
https://doi.org/10.1016/j.cej.2021.129021
[5]  Geng, K., He, T., Liu, R., Dalapati, S., Tan, K.T., Li, Z., et al. (2020) Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews, 120, 8814-8933.
https://doi.org/10.1021/acs.chemrev.9b00550
[6]  Guo, Z., Shi, Z., Wang, X., Li, Z. and Li, G. (2020) Proton Conductive Covalent Organic Frameworks. Coordination Chemistry Reviews, 422, Article 213465.
https://doi.org/10.1016/j.ccr.2020.213465
[7]  Yin, Z., Geng, H., Yang, P., Shi, B., Fan, C., Peng, Q., et al. (2021) Improved Proton Conduction of Sulfonated Poly(Ether Ether Ketone) Membrane by Sulfonated Covalent Organic Framework Nanosheets. International Journal of Hydrogen Energy, 46, 26550-26559.
https://doi.org/10.1016/j.ijhydene.2021.05.119
[8]  Chen, S., Wu, Y., Zhang, Y., Zhang, W., Fu, Y., Huang, W., et al. (2020) Tuning Proton Dissociation Energy in Proton Carrier Doped 2D Covalent Organic Frameworks for Anhydrous Proton Conduction at Elevated Temperature. Journal of Materials Chemistry A, 8, 13702-13709.
https://doi.org/10.1039/d0ta04488a
[9]  Shinde, D.B., Aiyappa, H.B., Bhadra, M., Biswal, B.P., Wadge, P., Kandambeth, S., et al. (2016) A Mechanochemically Synthesized Covalent Organic Framework as a Proton-Conducting Solid Electrolyte. Journal of Materials Chemistry A, 4, 2682-2690.
https://doi.org/10.1039/c5ta10521h
[10]  Chen, Y., Wang, X., Xu, W., Liu, K., Qiu, W., Wu, Y., et al. (2023) Constructing Redox-Active 3D Covalent Organic Frameworks with High-Affinity Hexameric Binding Sites for Enhanced Uranium Capture. Chemical Engineering Journal, 459, Article 141633.
https://doi.org/10.1016/j.cej.2023.141633
[11]  Zhang, S., Lu, Y., Sun, X., Li, Z., Dang, T. and Liu, S. (2020) Proton Transfer in Polyamine-P2Mo5 Model Adducts: Exploring the Effect of Polyamine Cations on Their Proton Conductivity. Dalton Transactions, 49, 17301-17309.
https://doi.org/10.1039/d0dt03446k

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133