全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于T分布扰动和透镜成像反向学习的算术优化算法及应用
Arithmetic Optimization Algorithm Based on T-Distribution Perturbation and Lens Imaging Opposition-Based Learning with Its Applications

DOI: 10.12677/aam.2025.144226, PP. 1051-1075

Keywords: 算术优化算法,T分布扰动,透镜成像反向学习,工程优化问题
Arithmetic Optimization Algorithm
, T-Distribution Perturbation, Lens Imaging Reverse Learning, Engineering Optimization Problems

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对算术优化算法(Arithmetic optimization algorithm, AOA)易陷入局部最优、收敛速度慢等问题,提出一种基于T分布透镜成像反向学习策略的算术优化算法(TOBLAOA),设计动态平衡机制调节全局探索强度与局部开采深度的配比,从而突破早熟收敛瓶颈并提高解精度稳定性。对2005、2017、2015测试集中的部分基准函数(共15个)进行仿真实验,首先引入4种不同改进策略的改进透镜成像反向学习策略的算术优化算法(OBLAOA)算法进行比较,再与哈里斯鹰优化算法、雷电附着优化算法等6个优化算法进行了实验结果对比和差异显著性Wilcoxon秩和检验,结果表明改进后的算术优化算法在求解精度、收敛速度上均有显著提升。最后将算法应用于工程优化中的常见的压力容器设计、三杆桁架设计、齿轮系设计中,进一步验证此算法的有效性。
To address issues such as the Arithmetic Optimization Algorithm (AOA) being prone to local optima and having slow convergence speed, this paper proposes a T-distribution lens imaging opposition-based learning arithmetic optimization algorithm (TOBLAOA). The algorithm designs a dynamic balance mechanism to regulate the ratio between global exploration intensity and local exploitation depth, thereby breaking through the bottleneck of premature convergence and improving the stability of solution accuracy. Simulation experiments were conducted on selected benchmark functions (totaling 15) from the 2005, 2017, and 2015 test sets. The study first compares four improved OBLAOA algorithms with different enhancement strategies, and then performs experimental result comparisons and Wilcoxon rank-sum significance tests with six optimization algorithms including Harris Hawk Optimization and Lightning Attachment Procedure Optimization. The results demonstrate that the enhanced arithmetic optimization algorithm achieves significant improvements in both solution accuracy and convergence speed. Finally, the algorithm was applied to common engineering optimization problems such as pressure vessel design, three-bar truss design, and gear train design, further verifying its effectiveness.

References

[1]  Salomon, R. (1996) Re-Evaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions. A Survey of Some Theoretical and Practical Aspects of Genetic Algorithms. Biosystems, 39, 263-278.
https://doi.org/10.1016/0303-2647(96)01621-8
[2]  Kennedy, J. and Eberhart, R. (1995) Particle Swarm Optimization. Proceedings of ICNN’95—International Conference on Neural Networks, Perth, 27 November-1 December 1995, 1942-1948.
https://doi.org/10.1109/icnn.1995.488968
[3]  Arora, S. and Singh, S. (2018) Butterfly Optimization Algorithm: A Novel Approach for Global Optimization. Soft Computing, 23, 715-734.
https://doi.org/10.1007/s00500-018-3102-4
[4]  Habibpour Roudsari, M.N. (2024) Improved Task Scheduling in Heterogeneous Distributed Systems Using Intelligent Greedy Harris Hawk Optimization Algorithm. Evolutionary Intelligence, 17, 4199-4226.
https://doi.org/10.1007/s12065-024-00979-8
[5]  Mirjalili, S. (2016) SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowledge-Based Systems, 96, 120-133.
https://doi.org/10.1016/j.knosys.2015.12.022
[6]  Mirjalili, S. and Lewis, A. (2016) The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51-67.
https://doi.org/10.1016/j.advengsoft.2016.01.008
[7]  Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M. and Gandomi, A.H. (2021) The Arithmetic Optimization Algorithm. Computer Methods in Applied Mechanics and Engineering, 376, Article ID: 113609.
https://doi.org/10.1016/j.cma.2020.113609
[8]  郑婷婷, 刘升, 叶旭. 自适应t分布与动态边界策略改进的算术优化算法[J]. 计算机应用研究, 2022, 39(5): 1410-1414.
[9]  黄学雨, 罗华. 融合正余弦策略的算术优化算法[J]. 计算机工程与科学, 2023, 45(7): 1320-1330.
[10]  兰周新, 何庆. 多策略融合算术优化算法及其工程优化[J]. 计算机应用研究, 2022, 39(3): 758-763.
[11]  杨文珍, 何庆. 融合微平衡激活的小孔成像算术优化算法[J]. 计算机工程与应用, 2022, 58(13): 85-93.
[12]  邵彝君, 朱良宽, 付雪, 等. 融合混沌和差分变异的正余弦算术优化算法[J]. 计算机仿真, 2024, 41(11): 393-402.
[13]  Tizhoosh, H.R. (2006) Opposition-Based Reinforcement Learning. Journal of Advanced Computational Intelligence and Intelligent Informatics, 10, 578-585.
https://doi.org/10.20965/jaciii.2006.p0578
[14]  杜鹏桢, 唐振民, 孙研. 一种混合蜂群算法的自适应细菌觅食优化算法[J]. 计算机工程, 2014, 40(7): 138-142.
[15]  韩斐斐, 刘升. 基于自适应t分布变异的缎蓝园丁鸟优化算法[J]. 微电子学与计算机, 2018, 35(8): 117-121.
[16]  Nematollahi, A.F., Rahiminejad, A. and Vahidi, B. (2017) A Novel Physical Based Meta-Heuristic Optimization Method Known as Lightning Attachment Procedure Optimization. Applied Soft Computing, 59, 596-621.
https://doi.org/10.1016/j.asoc.2017.06.033
[17]  Sadollah, A., Sayyaadi, H. and Yadav, A. (2018) A Dynamic Metaheuristic Optimization Model Inspired by Biological Nervous Systems: Neural Network Algorithm. Applied Soft Computing, 71, 747-782.
https://doi.org/10.1016/j.asoc.2018.07.039
[18]  Derrac, J., García, S., Molina, D. and Herrera, F. (2011) A Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms. Swarm and Evolutionary Computation, 1, 3-18.
https://doi.org/10.1016/j.swevo.2011.02.002
[19]  张宁. 乌鸦搜索算法与侏儒猫鼬优化算法分析及应用研究[D]: [硕士学位论文]. 南宁: 广西民族大学, 2023.
[20]  汪逸晖, 高亮. 乌鸦搜索算法的改进及其在工程约束优化问题中的应用[J]. 计算机集成制造系统, 2021(7): 1871-1883.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133