|
Delta毒株疫情防控措施的效果评估——以南京市与扬州市为例
|
Abstract:
2019年末,新型冠状病毒首次被发现,随后疫情迅速蔓延至全球多国,对公共卫生体系及经济社会发展带来严峻挑战。随着疫情的持续发展,新冠病毒出现了多种变异株,Delta毒株因其传播速度快、感染力强以及对防控措施提出更大挑战而备受关注。面对这些挑战,我国政府不断调整防控策略,通过密切接触者追踪、隔离、控制社交距离等措施积极应对疾病扩散。本文旨在评估2021年江苏省南京市和扬州市Delta变异株新冠疫情的防控效果,为此构建了一种包含时变参数的离散随机模型,深入分析不同防控措施对疫情传播动态的影响。本文通过粒子迭代滤波算法对模型参数进行极大似然估计,较好地拟合了实际疫情数据。研究发现,Delta毒株在传播初期具有极强的传染性,南京市和扬州市的初始再生数分别为5.19和9.98,但在政府迅速采取的防控措施下,有效再生数在数日内降至1以下。通过对不同干预措施的模拟分析,结果表明隔离率、口罩佩戴率和社交距离控制对疫情传播具有显著影响,尤其是南京市精准快速的隔离策略显著减少了疫情规模。本研究为疫情防控措施的科学评估提供了重要的数学建模方法与实证依据,为未来新型传染病的防控政策制定提供了有力支持。
At the end of 2019, a novel coronavirus was first identified. The outbreak subsequently spread rapidly to countries worldwide, posing severe challenges to public health systems and socio-economic development. As the pandemic progressed, multiple variants of the virus emerged, among which the Delta variant attracted significant attention due to their high transmissibility, strong infectivity, and the greater challenges they posed to control measures. In response to these challenges, the Chinese government continuously adjusted its containment strategies, including contact tracing, isolation, and social distancing, to actively curb the spread of the disease. This study aims to evaluate the effectiveness of COVID-19 control measures during the 2021 Delta variant outbreaks in Nanjing and Yangzhou, Jiangsu Province. A discrete stochastic model with time-varying parameters was constructed to analyze the impact of various control measures on the dynamics of the epidemic. Using particle iterated filtering algorithms, the model parameters were estimated through maximum likelihood estimation, achieving a good fit to the actual epidemic data. The study found that the Delta variant exhibited extremely high transmissibility in its early stages, with initial reproduction numbers of 5.19 in Nanjing and 9.98 in Yangzhou. However, due to the rapid implementation of control measures by the government, the effective reproduction number dropped below 1 within days. Simulations of different intervention scenarios demonstrated that isolation rates, mask-wearing rates, and social distancing control significantly influenced the epidemic’s spread. Notably, Nanjing’s precise and rapid isolation strategies greatly reduced the scale of the outbreak. This research provides a robust mathematical modeling framework and empirical evidence for the scientific evaluation of control measures, offering valuable insights for future infectious disease policy-making.
[1] | Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., et al. (2020) Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. New England Journal of Medicine, 382, 1199-1207. https://doi.org/10.1056/nejmoa2001316 |
[2] | Li, M.T., Sun, G.Q., Zhang, J., et al. (2020) Analysis of COVID-19 Transmission in Shanxi Province with Discrete Time Imported Cases. Mathematical Biosciences and Engineering, 17, 3710-3720. |
[3] | Adam, D. (2021) What Scientists Know about New, Fast-Spreading Coronavirus Variants. Nature, 594, 19-20. https://doi.org/10.1038/d41586-021-01390-4 |
[4] | Asamoah, J.K.K., Okyere, E., Abidemi, A., Moore, S.E., Sun, G., Jin, Z., et al. (2022) Optimal Control and Comprehensive Cost-Effectiveness Analysis for Covid-19. Results in Physics, 33, Article 105177. https://doi.org/10.1016/j.rinp.2022.105177 |
[5] | Kupferschmidt, K. and Wadman, M. (2021) Delta Variant Triggers New Phase in the Pandemic. Science, 372, 1375-1376. https://doi.org/10.1126/science.372.6549.1375 |
[6] | Dhawan, M., Saied, A.A., Mitra, S., Alhumaydhi, F.A., Emran, T.B. and Wilairatana, P. (2022) Omicron Variant (B.1.1.529) and Its Sublineages: What Do We Know So Far Amid the Emergence of Recombinant Variants of SARS-CoV-2? Biomedicine & Pharmacotherapy, 154, Article 113522. https://doi.org/10.1016/j.biopha.2022.113522 |
[7] | Lin, L., Zhao, Y., Chen, B. and He, D. (2022) Multiple COVID-19 Waves and Vaccination Effectiveness in the United States. International Journal of Environmental Research and Public Health, 19, Article 2282. https://doi.org/10.3390/ijerph19042282 |
[8] | Brand, S.P.C., Ojal, J., Aziza, R., Were, V., Okiro, E.A., Kombe, I.K., et al. (2021) COVID-19 Transmission Dynamics Underlying Epidemic Waves in Kenya. Science, 374, 989-994. https://doi.org/10.1126/science.abk0414 |
[9] | Dhar, M.S., Marwal, R., VS, R., Ponnusamy, K., Jolly, B., Bhoyar, R.C., et al. (2021) Genomic Characterization and Epidemiology of an Emerging SARS-CoV-2 Variant in Delhi, India. Science, 374, 995-999. https://doi.org/10.1126/science.abj9932 |
[10] | 河北省卫生健康委员会. 2021年1月5日河北省新型冠状病毒肺炎疫情情况[EB/OL]. 2021-01-07. http://wsjkw.hebei.gov.cn/yqtb/375222.jhtml, 2025-04-28. |
[11] | 广东省卫生健康委员会. 2021年5月22日广东省新冠疫情情况[EB/OL]. 2021-05-22. https://wsjkw.gd.gov.cn/xxgzbdfk/content/post_3288675.html, 2025-04-28. |
[12] | 江苏省卫生健康委员会. 最新通报: 7月21日8时至19时江苏新增本土新冠肺炎确诊病例2例[EB/OL]. 2021-07-22. https://wjw.jiangsu.gov.cn/art/2021/7/22/art_7290_9894861.html, 2025-04-28. |
[13] | 陕西省疾病预防控制中心. 陕西新增一例本土确诊病例[EB/OL]. 2021-12-09. http://www.sxcdc.com/newstyle/pub_newsshow.asp?id=1019169&chid=100429, 2025-04-28 |
[14] | Zhang, F., Zhang, J., Li, M., Jin, Z. and Wen, Y. (2024) Assessing the Impact of Different Contact Patterns on Disease Transmission: Taking COVID-19 as a Case. PLOS ONE, 19, e0300884. https://doi.org/10.1371/journal.pone.0300884 |
[15] | Zhou, W., Bai, Y. and Tang, S. (2022) The Effectiveness of Various Control Strategies: An Insight from a Comparison Modelling Study. Journal of Theoretical Biology, 549, Article 111205. https://doi.org/10.1016/j.jtbi.2022.111205 |
[16] | Wang, P., Li, Y. and Pan, Z. (2021) Research on Spatial Epidemic Dynamics Modelling of COVID-19 Outbreak: Take Nanjing as an Example. Proceedings of the 1st International Conference on Public Management and Big Data Analysis, Harbin, 17-19 December 2021, 335-341. https://doi.org/10.5220/0011344100003437 |
[17] | Zeng, Z., Wu, T., Lin, Z., Luo, L., Lin, Z., Guan, W., et al. (2022) Containment of SARS-CoV-2 Delta Strain in Guangzhou, China by Quarantine and Social Distancing: A Modelling Study. Scientific Reports, 12, Article No. 21096. https://doi.org/10.1038/s41598-022-21674-7 |
[18] | Liu, W., Guo, Z., Abudunaibi, B., Ouyang, X., Wang, D., Yang, T., et al. (2022) Model-Based Evaluation of Transmissibility and Intervention Measures for a COVID-19 Outbreak in Xiamen City, China. Frontiers in Public Health, 10, Article 887146. https://doi.org/10.3389/fpubh.2022.887146 |
[19] | 江苏省疾病预防控制中心. 截至7月21日8时江苏新增本土新冠肺炎确诊病例7例, 境外输入确诊病例2例[EB/OL]. 2021-07-21. https://www.jscdc.cn/xxgk_1641/yqdt/202310/t20231026_89886.html, 2025-04-28. |
[20] | Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. and Schmid, M. (2019) A Review of Spline Function Procedures in R. BMC Medical Research Methodology, 19, Article No. 46. https://doi.org/10.1186/s12874-019-0666-3 |
[21] | Liossi, S., Tsiambas, E., Maipas, S., Papageorgiou, E., Lazaris, A. and Kavantzas, N. (2023) Mathematical Modeling for Delta and Omicron Variant of SARS-CoV-2 Transmission Dynamics in Greece. Infectious Disease Modelling, 8, 794-805. https://doi.org/10.1016/j.idm.2023.07.002 |
[22] | Wang, Y., Tian, H., Zhang, L., Zhang, M., Guo, D., Wu, W., et al. (2020) Reduction of Secondary Transmission of SARS-CoV-2 in Households by Face Mask Use, Disinfection and Social Distancing: A Cohort Study in Beijing, China. BMJ Global Health, 5, e002794. https://doi.org/10.1136/bmjgh-2020-002794 |
[23] | Sanyi, T., Biao, T., Bragazzi, N.L., et al. (2020) Analysis of COVID-19 Epidemic Traced Data and Stochastic Discrete Transmission Dynamic Model. Scientia Sinica Mathematica, 50, 1071-1086. |
[24] | Zhang, M., Xiao, J., Deng, A., Zhang, Y., Zhuang, Y., Hu, T., et al. (2021) Transmission Dynamics of an Outbreak of the COVID-19 Delta Variant B.1.617.2—Guangdong Province, China, May-June 2021. China CDC Weekly, 3, 584-586. https://doi.org/10.46234/ccdcw2021.148 |
[25] | King, A. (2015) Statistical Inference for Partially-Observed Markov Processes. http://kingaa.github.io/pomp/ |
[26] | Paine, S., Mercer, G.N., Kelly, P.M., Bandaranayake, D., Baker, M.G., Huang, Q.S., et al. (2010) Transmissibility of 2009 Pandemic Influenza A(H1N1) in New Zealand: Effective Reproduction Number and Influence of Age, Ethnicity and Importations. Eurosurveillance, 15, Article 19591. https://doi.org/10.2807/ese.15.24.19591-en |
[27] | Wallinga, J. (2004) Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures. American Journal of Epidemiology, 160, 509-516. https://doi.org/10.1093/aje/kwh255 |
[28] | Guo, Z., Zhao, S., Mok, C.K.P., So, R.T.Y., Yam, C.H.K., Chow, T.Y., et al. (2023) Comparing the Incubation Period, Serial Interval, and Infectiousness Profile between SARS-CoV-2 Omicron and Delta Variants. Journal of Medical Virology, 95, e28648. https://doi.org/10.1002/jmv.28648 |
[29] | Rizki, S.A. and Kurniawan, A. (2020) Efficacy of Cloth Mask in Reducing COVID-19 Transmission: A Literature Review. Kesmas: National Public Health Journal, 15, 43-48. https://doi.org/10.21109/kesmas.v15i2.3893 |
[30] | Wang, Y., Deng, Z. and Shi, D. (2021) How Effective Is a Mask in Preventing COVID‐19 Infection? MEDICAL DEVICES & SENSORS, 4, e10163. https://doi.org/10.1002/mds3.10163 |