|
求解大规模线性问题的张量GMRES算法
|
Abstract:
彩色图像和视频通常可以被描述为高阶张量。本文基于三阶张量t-积,讨论了Krylov子空间方法用以解决图像恢复中的大规模线性问题。本文通过张量GMRES算法构建Krylov子空间,将大规模线性问题转换为小规模问题,且构建的子空间始终保持张量的空间结构。数值例子和彩色图像修复的应用说明了算法的有效性。
Color images and video sequences can typically be characterized as higher-order tensors. This paper investigates Krylov subspace methods based on the third-order tensor t-product for solving large-scale linear systems arising in image restoration. This paper employs the tensor GMRES algorithm to construct the Krylov subspace, effectively reducing large-scale linear problems to manageable small-scale formulations, while consistently preserving the spatial architecture of tensors within the constructed subspace. Numerical experiments and applications in color image inpainting demonstrate the efficacy of the proposed methodology.
[1] | Kolda, T.G. and Bader, B.W. (2009) Tensor Decompositions and Applications. SIAM Review, 51, 455-500. https://doi.org/10.1137/07070111x |
[2] | Tucker, L.R. (1966) Some Mathematical Notes on Three-Mode Factor Analysis. Psychometrika, 31, 279-311. https://doi.org/10.1007/bf02289464 |
[3] | De Lathauwer, L., De Moor, B. and Vandewalle, J. (2000) A Multilinear Singular Value Decomposition. SIAM Journal on Matrix Analysis and Applications, 21, 1253-1278. https://doi.org/10.1137/s0895479896305696 |
[4] | Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep Learning. MIT Press. |
[5] | He, K., Zhang, X., Ren, S. and Sun, J. (2015) Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 7-13 December 2015, 1026-1034. https://doi.org/10.1109/iccv.2015.123 |
[6] | Rasmussen, C.E. and Williams, C.K.I. (2005) Gaussian Processes for Machine Learning. The MIT Press. https://doi.org/10.7551/mitpress/3206.001.0001 |
[7] | Paszke, A., Gross, S., Massa, F., et al. (2019) PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information Processing Systems (NeurIPS), Vancouver, 8-14 December 2019. |
[8] | Kilmer, M.E. and Martin, C.D. (2011) Factorization Strategies for Third-Order Tensors. Linear Algebra and Its Applications, 435, 641-658. https://doi.org/10.1016/j.laa.2010.09.020 |
[9] | Braman, K. (2010) Third-Order Tensors as Linear Operators on a Space of Matrices. Linear Algebra and Its Applications, 433, 1241-1253. https://doi.org/10.1016/j.laa.2010.05.025 |
[10] | Cichocki, A. and Amari, S.I. (2010) Tensor Decompositions for Signal Processing Applications: From Two-Way to Multi-Way Component Analysis. IEEE Transactions on Signal Processing, 58, 1226-1241. |
[11] | Vasilenko, D. and Savich, A. (2016) Multidimensional Signal Processing Using Tensor Decomposition: A Survey. IEEE Transactions on Signal Processing, 64, 1263-1275. |
[12] | Reichel, L. and Ugwu, U.O. (2021) The Tensor Golub-Kahan-Tikhonov Method Applied to the Solution of Ill‐Posed Problems with a T‐Product Structure. Numerical Linear Algebra with Applications, 29, e2412. https://doi.org/10.1002/nla.2412 |
[13] | Ugwu, U.O. and Reichel, L. (2021) Tensor Regularization by Truncated Iteration: A Comparison of Some Solution Methods for Large-Scale Linear Discrete Ill-Posed Problems with a T-Product. arXiv preprint arXiv:2110.02485 |
[14] | Zheng, M. and Ni, G. (2023) Approximation Strategy Based on the T-Product for Third-Order Quaternion Tensors with Application to Color Video Compression. Applied Mathematics Letters, 140, Article 108587. https://doi.org/10.1016/j.aml.2023.108587 |
[15] | Khaleel, H.S., Mohd Sagheer, S.V., Baburaj, M. and George, S.N. (2018) Denoising of Rician Corrupted 3D Magnetic Resonance Images Using Tensor-SVD. Biomedical Signal Processing and Control, 44, 82-95. https://doi.org/10.1016/j.bspc.2018.04.004 |
[16] | Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., et al. (2015) Tensor Decompositions for Signal Processing Applications: From Two-Way to Multiway Component Analysis. IEEE Signal Processing Magazine, 32, 145-163. https://doi.org/10.1109/msp.2013.2297439 |
[17] | Zhang, J., Saibaba, A.K., Kilmer, M.E. and Aeron, S. (2018) A Randomized Tensor Singular Value Decomposition Based on the T-Product. Numerical Linear Algebra with Applications, 25, e2179. https://doi.org/10.1002/nla.2179 |
[18] | Hao, N., Kilmer, M.E., Braman, K. and Hoover, R.C. (2013) Facial Recognition Using Tensor-Tensor Decompositions. SIAM Journal on Imaging Sciences, 6, 437-463. https://doi.org/10.1137/110842570 |
[19] | Kilmer, M.E., Braman, K., Hao, N. and Hoover, R.C. (2013) Third-Order Tensors as Operators on Matrices: A Theoretical and Computational Framework with Applications in Imaging. SIAM Journal on Matrix Analysis and Applications, 34, 148-172. https://doi.org/10.1137/110837711 |
[20] | El Guide, M., El Ichi, A., Jbilou, K. and Sadaka, R. (2021) On Tensor GMRES and Golub-Kahan Methods via the T-Product for Color Image Processing. The Electronic Journal of Linear Algebra, 37, 524-543. https://doi.org/10.13001/ela.2021.5471 |
[21] | Song, H., Wang, S. and Huang, G. (2023) Tensor Conjugate-Gradient Methods for Tensor Linear Discrete Ill-Posed Problems. AIMS Mathematics, 8, 26782-26800. https://doi.org/10.3934/math.20231371 |
[22] | Wang, S., Huang, G. and Yin, F. (2024) Tensor Conjugate Gradient Methods with Automatically Determination of Regularization Parameters for Ill-Posed Problems with T-Product. Mathematics, 12, Article 159. https://doi.org/10.3390/math12010159 |
[23] | Kernfeld, E., Kilmer, M. and Aeron, S. (2015) Tensor-Tensor Products with Invertible Linear Transforms. Linear Algebra and Its Applications, 485, 545-570. https://doi.org/10.1016/j.laa.2015.07.021 |
[24] | Hansen, P.C. (1998) Rank-Deficient and Discrete Ill-Posed Problems. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719697 |