全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

车轮多边形激励下转向架齿轮箱轴承内部接触特性研究
Study on Internal Contact Characteristics of Bogie Gearbox Bearings under Wheel Polygon Excitation

DOI: 10.12677/met.2025.142024, PP. 245-256

Keywords: 转向架,齿轮箱轴承,车轮多边形,接触载荷特性
Bogie
, Gearbox Bearing, Wheel Polygon, Contact Load Characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

转向架齿轮箱轴承作为列车走行部中的关键核心部件,其内部接触特性直接影响轴承的正常运行,进而影响列车走行部的安全稳定性。除齿轮箱内部的激励外,实际运行中还受到轮轨激励的显著影响,如车轮踏面磨耗等,其中车轮多边形为最常见的激励形式。本文以转向架齿轮箱输入端的圆柱滚子轴承为研究对象并建立其动力学模型,并通过内部零件的速度特征验证了模型的有效性。同时,提出了基于转向架轮轨耦合动力学模型的轮轨激励获取方法。在此基础上对比分析了不同车轮多边形激励幅值和阶次作用下转向架齿轮箱轴承的内部接触载荷特性的变化规律。结果表明:车轮多边形激励会导致在承载区内滚子与外圈接触载荷发生冲击现象,随着多边形阶次的增加,滚子与外圈接触载荷的冲击越频繁,随着幅值的增加,滚子与外圈接触载荷的冲击幅度越大;滚子与保持架的碰撞力已表现出显著的随机波动特性,引入车轮多边形激励后,随着车轮多边形阶次和幅值的增加,碰撞力的随机波动程度进一步增强。
As a key core component of the train running gear, the gearbox bearing of the bogie directly affects its normal operation through internal contact characteristics, which in turn impacts the safety and stability of the running gear. In addition to internal excitations from the gearbox, it is also significantly influenced by wheel-rail excitations during actual operation, such as wheel tread wear, with wheel polygonization being the most common excitation form. In this paper, taking the cylindrical roller bearing at the input end of the bogie gearbox as the research object, a dynamic model is established, and the model’s validity is verified through the velocity characteristics of internal components. Furthermore, a method for obtaining wheel-rail excitation based on the bogie-wheel-rail coupled dynamic model is proposed. On this basis, the variation patterns of internal contact load characteristics of the bogie gearbox bearing under different wheel polygon excitation amplitudes and orders are comparatively analyzed. The results show that wheel polygon excitation induces impact phenomena in the contact load between the rollers and the outer race within the load-bearing region. As the polygon order increases, the impact frequency of the roller and the outer ring contact load rises, and as the excitation amplitude increases, the impact magnitude of the roller and the outer ring contact load becomes larger. Additionally, the collision force between the rollers and the cage exhibits significant random fluctuation characteristics, which intensify with the increase in wheel polygon order and amplitude when wheel polygon excitation is introduced.

References

[1]  Wang, Z., Zhang, W., Yin, Z., Cheng, Y., Huang, G. and Zou, H. (2018) Effect of Vehicle Vibration Environment of High-Speed Train on Dynamic Performance of Axle Box Bearing. Vehicle System Dynamics, 57, 543-563.
https://doi.org/10.1080/00423114.2018.1473615
[2]  查浩, 任尊松, 徐宁. 高速动车组轴箱轴承滚道载荷特性研究[J]. 机械工程学报, 2020, 56(4): 135-142.
[3]  查浩, 任尊松, 徐宁. 高速动车组轴箱轴承振动特性[J]. 机械工程学报, 2018, 54(16): 144-151.
[4]  查浩, 任尊松, 薛蕊, 等. 高速动车组轴箱轴承累积损伤与疲劳寿命研究[J]. 铁道学报, 2018, 40(10): 30-35.
[5]  查浩, 任尊松, 徐宁. 车轮扁疤激起的轴箱轴承冲击特性[J]. 交通运输工程学报, 2020, 20(4): 165-173.
[6]  马巧英, 杨绍普, 刘永强. 轮轨激扰下轨道车辆轴箱轴承振动与润滑特性分析[J]. 中国机械工程, 2024, 35(4): 580-590.
[7]  邓飞跃, 王红力, 高瑞洋, 等. 轮轨激励条件下轴箱轴承内圈故障振动特性分析[J]. 河北大学学报(自然科学版), 2023, 43(6): 561-570.
[8]  郑志伟, 易彩, 廖小康. 线路条件对高速列车轴箱轴承载荷特性影响研究[J]. 机械工程学报, 2024, 60(20): 251-260.
[9]  吕银辰, 廖爱华, 师蔚, 等. 考虑轨道不平顺激励的轴箱轴承振动特性分析[J]. 轴承, 2024(6): 16-24.
[10]  杨晨, 池茂儒, 吴兴文, 等. 基于车辆动力学的动车组轴箱轴承动态载荷计算方法[J]. 机械工程学报, 2023, 59(14): 179-189.
[11]  李伟, 徐文海, 杜昭童, 等. 轮轨激扰下高速动车组轴箱轴承故障特征解调方法研究[J]. 铁道车辆, 2024, 62(5): 39-48+89.
[12]  周越, 王曦, 侯宇, 等. 内部激励下高速列车齿轮箱振动行为及轴承载荷特性实验研究[J]. 振动与冲击, 2023, 42(13): 242-250.
[13]  于亦浩. 内外激励下齿轮箱轴承动力学建模及振动响应分析[D]: [硕士学位论文], 苏州: 苏州大学, 2023.
[14]  Wang, Z., Mei, G., Zhang, W., Cheng, Y., Zou, H., Huang, G., et al. (2018) Effects of Polygonal Wear of Wheels on the Dynamic Performance of the Gearbox Housing of a High-Speed Train. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232, 1852-1863.
https://doi.org/10.1177/0954409717752998
[15]  Wei, J., Zhang, A.Q., et al. (2018) A Study of Nonlinear Excitation Modeling of Helical Gears with Modification: Theoretical Analysis and Experiments. Mechanism and Machine Theory, 128, 314-335.
[16]  Singh, S., Köpke, U.G., Howard, C.Q. and Petersen, D. (2014) Analyses of Contact Forces and Vibration Response for a Defective Rolling Element Bearing Using an Explicit Dynamics Finite Element Model. Journal of Sound and Vibration, 333, 5356-5377.
https://doi.org/10.1016/j.jsv.2014.05.011
[17]  吕晓菲, 山鹰, 王萌. 基于ADAMS的圆锥滚子轴承仿真分析[J]. 哈尔滨轴承, 2014, 35(2): 5-7+12.
[18]  郑涛. 铁路货车轴承的显式动力学仿真与故障特征分析[D]: [硕士学位论文]. 石家庄: 石家庄铁道大学, 2014.
[19]  Wang, Z., Allen, P., Mei, G., Wang, R., Yin, Z. and Zhang, W. (2019) Influence of Wheel-Polygonal Wear on the Dynamic Forces within the Axle-Box Bearing of a High-Speed Train. Vehicle System Dynamics, 58, 1385-1406.
https://doi.org/10.1080/00423114.2019.1626013
[20]  Arya, U., Sadeghi, F., Conley, B., Russell, T., Peterson, W. and Meinel, A. (2022) Experimental Investigation of Cage Dynamics and Ball-Cage Contact Forces in an Angular Contact Ball Bearing. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 236, 2522-2534.
https://doi.org/10.1177/13506501221077768

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133