全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

管道清理机器人设计与通过性分析
Design and Passability Analysis of Pipeline Cleaning Robot

DOI: 10.12677/met.2025.142021, PP. 207-220

Keywords: 管道清洁机器人,结构设计,ADAMS,通过性分析
Pipeline Cleaning Robot
, Structural Design, ADAMS, Passability Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高中大型运输管道内壁结垢的清理效率,本文设计了一种能在800~1200 mm直径管道中工作的履带管道清理机器人。针对具体情况确定管道机器人的整体结构设计,使得机器人能够通过不同的组装形式适应不同的工作环境,并介绍了机器人的工作原理,对可变径的履带式行走机构及机器人的管径适应性进行了通过性分析,同时分析了机器人在管道中的几何约束运动和运动情况,并在ADAMS中分析了机器人在管道中的通过性。结果表明:管道机器人的设计合理,相关几何约束以及运动约束条件正确,机器人能够在设定管径范围内的直管与L形弯管中正常行走。
To enhance the cleaning efficiency of scaling deposits on the inner walls of medium-to-large transportation pipelines, a track-type pipeline cleaning robot capable of operating in pipelines with diameters ranging from 800~1200 mm has been designed in this paper. The overall structural design of the pipeline robot is determined based on specific working conditions, enabling the robot to adapt to diverse operational environments through different assembly configurations. This paper elaborates on the operational principles of the robot and conducts passability analysis on both the flexible diameter-adaptive crawler-type locomotion mechanism and the pipeline diameter adaptability of the robot. The geometric constraint motion and kinematic behavior of the robot within pipelines are systematically investigated, and robot’s passability is performed through ADAMS simulations. Results demonstrate that the robot design is reasonable, with validated geometric constraints and motion boundary conditions. The robot exhibits stable locomotion capabilities in both straight pipelines and L-shaped bends within the specified diameter range.

References

[1]  陈赛. 进口短缺情景下我国石油能源系统韧性研究[D]: [博士学位论文]. 北京: 中国矿业大学, 2022.
[2]  闫宏伟, 刘翼, 李健, 等. 埋地管道泄漏自适应封堵机器人设计及研究[J]. 中国安全生产科学技术, 2022, 18(1): 68-74.
[3]  白承栋. 内径自适应管道机器人设计与运动性能分析[D]: [硕士学位论文]. 大连: 大连理工大学, 2022.
[4]  Kakogawa, A., Ma, S. and Hirose, S. (2014) An In-Pipe Robot with Underactuated Parallelogram Crawler Modules. 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 31 May-7 June 2014, 1687-1692.
https://doi.org/10.1109/icra.2014.6907078
[5]  Moghaddam, M.M., Arbabtafti, M. and Hadi, A. (2011) In-Pipe Inspection Crawler Adaptable to the Pipe Interior Diameter. International Journal of Robotics and Automation, 26, 135-145.
https://doi.org/10.2316/journal.206.2011.2.206-3078
[6]  Ciszewski, M., Buratowski, T. and Giergiel, M. (2018) Modeling, Simulation and Control of a Pipe Inspection Mobile Robot with an Active Adaptation System. IFAC-PapersOnLine, 51, 132-137.
https://doi.org/10.1016/j.ifacol.2018.11.530
[7]  唐德威, 李庆凯, 姜生元, 等. 具有差动运动功能的管道机器人设计与分析[J]. 机械工程学报, 2011, 47(13): 1-8.
[8]  李斌. 一种面向地下管道的履带式智能机器人设计与实现[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2019.
[9]  郭忠峰, 陈少鹏, 毛柳伟, 等. 主动变径管道机器人结构设计及其ADAMS仿真研究[J]. 机床与液压, 2019, 47(15): 21-23, 48.
[10]  李智强, 李卫国, 冯志成, 等. 管道机器人结构与通过性分析[J]. 机械传动, 2021, 45(6): 146-152.
[11]  胡文君, 李著信, 苏毅, 等. 管道机器人在三通处的通过性分析[J]. 后勤工程学院学报, 2005, 21(3): 49-53, 62.
[12]  许冯平, 邓宗全. 管道机器人在弯道处通过性的研究[J]. 机器人, 2004, 26(2): 155-160.
[13]  孟浩龙, 王菊芬. 管内检测机器人在弯管处的通过性能研究[J]. 中国机械工程, 2008, 19(13): 1531-1535, 1551.
[14]  三维书屋工作室. ADAMS 2012虚拟样机从入门到精通[M]. 北京: 机械工业出版社: 2013: 377.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133