全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自噬在心血管疾病中的研究进展
Advances in Autophagy Research in Cardiovascular Diseases

DOI: 10.12677/acm.2025.1541332, PP. 3585-3590

Keywords: 自噬,心力衰竭,心肌缺血,糖尿病心肌病
Autophagy
, Heart Failure, Myocardial Ischemia, Diabetic Cardiomyopathy

Full-Text   Cite this paper   Add to My Lib

Abstract:

自噬作为真核细胞清除受损成分、维持稳态的关键机制,通过巨自噬、微自噬和分子伴侣介导自噬三种形式动态调控细胞命运。自噬活性受mTOR、AMPK及Mst1等信号通路精密调控。在心血管疾病中,自噬呈现双向作用:心力衰竭早期适度自噬通过清除受损线粒体延缓心衰进展,但过度激活会破坏自噬流稳态,加剧病理性重塑;心肌缺血阶段自噬发挥保护作用,而再灌注期ROS诱导的异常自噬则加重细胞死亡;糖尿病心肌病中自噬活性随病程呈现动态变化,早期抑制自噬可缓解纤维化,长期增强自噬以改善线粒体功能;阿霉素心肌损伤中自噬兼具保护与毒性双重角色。当前研究强调自噬通量动态平衡的重要性,但是自噬与铁死亡等非经典凋亡途径的交互作用将会给未来研究、治疗等提供新方向。
As a pivotal mechanism for eukaryotic cells to eliminate damaged components and maintain homeostasis, autophagy dynamically regulates cellular fate through three forms: macroautophagy, micro-autophagy, and chaperone-mediated autophagy. Autophagic activity is precisely regulated by signaling pathways including mTOR, AMPK, and Mst1. In cardiovascular diseases, autophagy exhibits dual roles: during early-stage heart failure, moderate autophagy delays disease progression by clearing damaged mitochondria, while excessive activation disrupts autophagic flux homeostasis and exacerbates pathological remodeling. Myocardial ischemia benefits from protective autophagy, whereas reperfusion-induced ROS triggers aberrant autophagy that aggravates cell death. Diabetic cardiomyopathy demonstrates dynamic changes in autophagic activity throughout disease progression—early-stage autophagy inhibition alleviates fibrosis, while long-term enhancement improves mitochondrial function. In doxorubicin-induced cardiotoxicity, autophagy manifests both protective and toxic effects. Current research emphasizes the importance of autophagy flux homeostasis, but the interaction between autophagy and ferroptosis and other non-canonical apoptotic pathways will provide new directions for future research and treatment.

References

[1]  Sciarretta, S., Volpe, M. and Sadoshima, J. (2014) Mammalian Target of Rapamycin Signaling in Cardiac Physiology and Disease. Circulation Research, 114, 549-564.
https://doi.org/10.1161/circresaha.114.302022
[2]  Kim, J., Kundu, M., Viollet, B. and Guan, K. (2011) AMPK and mTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nature Cell Biology, 13, 132-141.
https://doi.org/10.1038/ncb2152
[3]  Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., et al. (2007) Distinct Roles of Autophagy in the Heart during Ischemia and Reperfusion. Circulation Research, 100, 914-922.
https://doi.org/10.1161/01.res.0000261924.76669.36
[4]  Maejima, Y., Kyoi, S., Zhai, P., Liu, T., Li, H., Ivessa, A., et al. (2013) Mst1 Inhibits Autophagy by Promoting the Interaction between Beclin1 and Bcl-2. Nature Medicine, 19, 1478-1488.
https://doi.org/10.1038/nm.3322
[5]  Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., et al. (2007) The Role of Autophagy in Cardiomyocytes in the Basal State and in Response to Hemodynamic Stress. Nature Medicine, 13, 619-624.
https://doi.org/10.1038/nm1574
[6]  Xue, R., Zeng, J., Chen, Y., Chen, C., Tan, W., Zhao, J., et al. (2017) Sestrin 1 Ameliorates Cardiac Hypertrophy via Autophagy Activation. Journal of Cellular and Molecular Medicine, 21, 1193-1205.
https://doi.org/10.1111/jcmm.13052
[7]  Shirakabe, A., Zhai, P., Ikeda, Y., Saito, T., Maejima, Y., Hsu, C., et al. (2016) Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure. Circulation, 133, 1249-1263.
https://doi.org/10.1161/circulationaha.115.020502
[8]  Zhu, H., Tannous, P., Johnstone, J.L., Kong, Y., Shelton, J.M., Richardson, J.A., et al. (2007) Cardiac Autophagy Is a Maladaptive Response to Hemodynamic Stress. Journal of Clinical Investigation, 117, 1782-1793.
https://doi.org/10.1172/jci27523
[9]  Cao, D.J., Wang, Z.V., Battiprolu, P.K., Jiang, N., Morales, C.R., Kong, Y., et al. (2011) Histone Deacetylase (HDAC) Inhibitors Attenuate Cardiac Hypertrophy by Suppressing Autophagy. Proceedings of the National Academy of Sciences, 108, 4123-4128.
https://doi.org/10.1073/pnas.1015081108
[10]  Li, F., Zhang, N., Wu, Q., Yuan, Y., Yang, Z., Zhou, M., et al. (2016) Syringin Prevents Cardiac Hypertrophy Induced by Pressure Overload through the Attenuation of Autophagy. International Journal of Molecular Medicine, 39, 199-207.
https://doi.org/10.3892/ijm.2016.2824
[11]  Sciarretta, S., Zhai, P., Shao, D., Maejima, Y., Robbins, J., Volpe, M., et al. (2012) Rheb Is a Critical Regulator of Autophagy during Myocardial Ischemia: Pathophysiological Implications in Obesity and Metabolic Syndrome. Circulation, 125, 1134-1146.
https://doi.org/10.1161/circulationaha.111.078212
[12]  Yue, H., Liu, J., Liu, P., Li, W., Chang, F., Miao, J., et al. (2015) Sphingosylphosphorylcholine Protects Cardiomyocytes against Ischemic Apoptosis via Lipid Raft/PTEN/Akt1/mTOR Mediated Autophagy. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1851, 1186-1193.
https://doi.org/10.1016/j.bbalip.2015.04.001
[13]  Yan, L., Vatner, D.E., Kim, S., Ge, H., Masurekar, M., Massover, W.H., et al. (2005) Autophagy in Chronically Ischemic Myocardium. Proceedings of the National Academy of Sciences, 102, 13807-13812.
https://doi.org/10.1073/pnas.0506843102
[14]  Jaishy, B., Zhang, Q., Chung, H.S., Riehle, C., Soto, J., Jenkins, S., et al. (2015) Lipid-induced NOX2 Activation Inhibits Autophagic Flux by Impairing Lysosomal Enzyme Activity. Journal of Lipid Research, 56, 546-561.
https://doi.org/10.1194/jlr.m055152
[15]  Xie, M., Kong, Y., Tan, W., May, H., Battiprolu, P.K., Pedrozo, Z., et al. (2014) Histone Deacetylase Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy. Circulation, 129, 1139-1151.
https://doi.org/10.1161/circulationaha.113.002416
[16]  Yu, P., Zhang, J., Yu, S., Luo, Z., Hua, F., Yuan, L., et al. (2015) Protective Effect of Sevoflurane Postconditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagic Clearance. PLOS ONE, 10, e0134666.
https://doi.org/10.1371/journal.pone.0134666
[17]  Sciarretta, S., Boppana, V.S., Umapathi, M., et al. (2015) Boosting Autophagy in the Diabetic Heart: A Translational Perspective. Cardiovascular Diagnosis and Therapy, 5, 394-402.
[18]  Li, Z., Woollard, J.R., Ebrahimi, B., Crane, J.A., Jordan, K.L., Lerman, A., et al. (2012) Transition from Obesity to Metabolic Syndrome Is Associated with Altered Myocardial Autophagy and Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1132-1141.
https://doi.org/10.1161/atvbaha.111.244061
[19]  Wei, H., Qu, H., Wang, H., Ji, B., Ding, Y., Liu, D., et al. (2017) 1,25-Dihydroxyvitamin-D3 Prevents the Development of Diabetic Cardiomyopathy in Type 1 Diabetic Rats by Enhancing Autophagy via Inhibiting the β-Catenin/TCF4/GSK-3β/mTOR Pathway. The Journal of Steroid Biochemistry and Molecular Biology, 168, 71-90.
https://doi.org/10.1016/j.jsbmb.2017.02.007
[20]  Xu, X., Kobayashi, S., Chen, K., Timm, D., Volden, P., Huang, Y., et al. (2013) Diminished Autophagy Limits Cardiac Injury in Mouse Models of Type 1 Diabetes. Journal of Biological Chemistry, 288, 18077-18092.
https://doi.org/10.1074/jbc.m113.474650
[21]  Feng, Y., Xu, W., Zhang, W., Wang, W., Liu, T. and Zhou, X. (2019) LncRNA DCRF Regulates Cardiomyocyte Autophagy by Targeting miR-551b-5p in Diabetic Cardiomyopathy. Theranostics, 9, 4558-4566.
https://doi.org/10.7150/thno.31052
[22]  Lin, C., Zhang, M., Zhang, Y., Yang, K., Hu, J., Si, R., et al. (2017) Helix B Surface Peptide Attenuates Diabetic Cardiomyopathy via AMPK-Dependent Autophagy. Biochemical and Biophysical Research Communications, 482, 665-671.
https://doi.org/10.1016/j.bbrc.2016.11.091
[23]  Xiao, Y., Wu, Q.Q., Duan, M.X., Liu, C., Yuan, Y., Yang, Z., et al. (2018) TAX1BP1 Overexpression Attenuates Cardiac Dysfunction and Remodeling in STZ-Induced Diabetic Cardiomyopathy in Mice by Regulating Autophagy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864, 1728-1743.
https://doi.org/10.1016/j.bbadis.2018.02.012
[24]  Kobayashi, S., Volden, P., Timm, D., Mao, K., Xu, X. and Liang, Q. (2010) Transcription Factor GATA4 Inhibits Doxorubicin-Induced Autophagy and Cardiomyocyte Death. Journal of Biological Chemistry, 285, 793-804.
https://doi.org/10.1074/jbc.m109.070037
[25]  Li, D.L., Wang, Z.V., Ding, G., Tan, W., Luo, X., Criollo, A., et al. (2016) Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation, 133, 1668-1687.
https://doi.org/10.1161/circulationaha.115.017443
[26]  Bartlett, J.J., Trivedi, P.C., Yeung, P., Kienesberger, P.C. and Pulinilkunnil, T. (2016) Doxorubicin Impairs Cardiomyocyte Viability by Suppressing Transcription Factor EB Expression and Disrupting Autophagy. Biochemical Journal, 473, 3769-3789.
https://doi.org/10.1042/bcj20160385
[27]  Chen, C., Jiang, L., Zhang, M., Pan, X., Peng, C., Huang, W., et al. (2019) Isodunnianol Alleviates Doxorubicin-Induced Myocardial Injury by Activating Protective Autophagy. Food & Function, 10, 2651-2657.
https://doi.org/10.1039/c9fo00063a

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133