全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

影像组学对肺结节诊断的研究进展
Advances in Radiomics for Pulmonary Nodule Diagnosis

DOI: 10.12677/acm.2025.1541331, PP. 3579-3584

Keywords: 影像组学,肺结节,诊断,预后
Radiomics
, Pulmonary Nodules, Diagnosis, Prognosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

影像组学作为新兴的医学影像分析技术,通过高通量特征提取与人工智能算法,显著提升了肺结节诊断的精准性与客观性,成为肺结节早期筛查与诊疗的重要工具。肺结节作为肺癌早期筛查的核心指标,其精准诊断直接影像临床决策与患者预后。传统依赖医师经验的影像学评估和具有侵入性的病理活检存在诊断效能瓶颈。影像组学通过提取肺结节的影像学特征,可以提高对肺结节诊断的准确性和可视性。本文综述了影像组学对肺结节诊断的研究进展,包括肺结节良恶性及浸润性的诊断,影像组学复合模型对肺结节的预测,探讨了增强CT影像组学的应用前景。
As an emerging medical imaging analysis technology, radiomics has significantly improved the accuracy and objectivity of pulmonary nodule diagnosis through high-throughput feature extraction and artificial intelligence algorithms, becoming an important tool for early screening and diagnosis of pulmonary nodules. As a core indicator for early screening of lung cancer, pulmonary nodules provide accurate diagnosis that directly affects imaging clinical decision-making and patient prognosis. Traditional imaging evaluations that rely on physician experience and invasive pathological biopsies have diagnostic efficacy bottlenecks. Imaging omics can improve the accuracy and visibility of pulmonary nodule diagnosis by extracting imaging features of pulmonary nodules. This article reviews the research progress of radiomics in the diagnosis of pulmonary nodules, including the diagnosis of benign, malignant, and invasive pulmonary nodules, the prediction of pulmonary nodules by radiomics composite models, and explores the application prospects of enhanced CT radiomics.

References

[1]  Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33.
https://doi.org/10.3322/caac.21654
[2]  The National Lung Screening Trial Research Team (2011) Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. New England Journal of Medicine, 365, 395-409.
https://doi.org/10.1056/nejmoa1102873
[3]  Li, N., Tan, F., Chen, W., Dai, M., Wang, F., Shen, S., et al. (2022) One-off Low-Dose CT for Lung Cancer Screening in China: A Multicentre, Population-Based, Prospective Cohort Study. The Lancet Respiratory Medicine, 10, 378-391.
https://doi.org/10.1016/s2213-2600(21)00560-9
[4]  Mazzone, P.J. and Lam, L. (2022) Evaluating the Patient with a Pulmonary Nodule. JAMA, 327, 264-273.
https://doi.org/10.1001/jama.2021.24287
[5]  Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577.
https://doi.org/10.1148/radiol.2015151169
[6]  Truong, M.T., Ko, J.P., Rossi, S.E., Rossi, I., Viswanathan, C., Bruzzi, J.F., et al. (2014) Update in the Evaluation of the Solitary Pulmonary Nodule. RadioGraphics, 34, 1658-1679.
https://doi.org/10.1148/rg.346130092
[7]  Yuan, J., Sun, Y., Xu, F., Li, M., Fan, M., Zhang, C., et al. (2022) Cost-Effectiveness of Lung Cancer Screening Combined with Nurse-Led Smoking Cessation Intervention: A Population-Based Microsimulation Study. International Journal of Nursing Studies, 134, Article 104319.
https://doi.org/10.1016/j.ijnurstu.2022.104319
[8]  Wu, F., Wu, Y., Chen, C. and Yang, S. (2022) Impact of Smoking Status on Lung Cancer Characteristics and Mortality Rates between Screened and Non-Screened Lung Cancer Cohorts: Real-World Knowledge Translation and Education. Journal of Personalized Medicine, 12, Article 26.
https://doi.org/10.3390/jpm12010026
[9]  Chen, C., Chang, C., Tu, C., Liao, W., Wu, B., Chou, K., et al. (2018) Radiomic Features Analysis in Computed Tomography Images of Lung Nodule Classification. PLOS ONE, 13, e0192002.
https://doi.org/10.1371/journal.pone.0192002
[10]  Reiazi, R., Abbas, E., Famiyeh, P., Rezaie, A., Kwan, J.Y.Y., Patel, T., et al. (2021) The Impact of the Variation of Imaging Parameters on the Robustness of Computed Tomography Radiomic Features: A Review. Computers in Biology and Medicine, 133, Article 104400.
https://doi.org/10.1016/j.compbiomed.2021.104400
[11]  MacMahon, H., Naidich, D.P., Goo, J.M., Lee, K.S., Leung, A.N.C., Mayo, J.R., et al. (2017) Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology, 284, 228-243.
https://doi.org/10.1148/radiol.2017161659
[12]  She, Y., Zhao, L., Dai, C., Ren, Y., Zha, J., Xie, H., et al. (2016) Preoperative Nomogram for Identifying Invasive Pulmonary Adenocarcinoma in Patients with Pure Ground-Glass Nodule: A Multi-Institutional Study. Oncotarget, 8, 17229-17238.
https://doi.org/10.18632/oncotarget.11236
[13]  Mao, R., She, Y., Zhu, E., Chen, D., Dai, C., Wu, C., et al. (2019) A Proposal for Restaging of Invasive Lung Adenocarcinoma Manifesting as Pure Ground Glass Opacity. The Annals of Thoracic Surgery, 107, 1523-1531.
https://doi.org/10.1016/j.athoracsur.2018.11.039
[14]  Pan, F., Feng, L., Liu, B., Hu, Y. and Wang, Q. (2023) Application of Radiomics in Diagnosis and Treatment of Lung Cancer. Frontiers in Pharmacology, 14, Article 1295511.
https://doi.org/10.3389/fphar.2023.1295511
[15]  Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446.
https://doi.org/10.1016/j.ejca.2011.11.036
[16]  Goldstraw, P., Chansky, K., Crowley, J., Rami-Porta, R., Asamura, H., Eberhardt, W.E.E., et al. (2016) The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. Journal of Thoracic Oncology, 11, 39-51.
https://doi.org/10.1016/j.jtho.2015.09.009
[17]  Qureshi, N.R., Shah, A., Eaton, R.J., Miles, K. and Gilbert, F.J. (2016) Dynamic Contrast Enhanced CT in Nodule Characterization: How We Review and Report. Cancer Imaging, 16, Article No. 16.
https://doi.org/10.1186/s40644-016-0074-4
[18]  Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[19]  Yanagawa, M., Tsubamoto, M., Satoh, Y., Hata, A., Miyata, T., Yoshida, Y., et al. (2020) Lung Adenocarcinoma at CT with 0.25-Mm Section Thickness and a 2048 Matrix: High-Spatial-Resolution Imaging for Predicting Invasiveness. Radiology, 297, 462-471.
https://doi.org/10.1148/radiol.2020201911
[20]  Albers, J., Wagner, W.L., Fiedler, M.O., Rothermel, A., Wünnemann, F., Di Lillo, F., et al. (2023) High Resolution Propagation-Based Lung Imaging at Clinically Relevant X-Ray Dose Levels. Scientific Reports, 13, Article No. 4788.
https://doi.org/10.1038/s41598-023-30870-y
[21]  Sharma, S., Pal, D., Abadi, E., Sauer, T., Segars, P., Hsieh, J., et al. (2023) Can Photon-Counting CT Improve Estimation Accuracy of Morphological Radiomics Features? A Simulation Study for Assessing the Quantitative Benefits from Improved Spatial Resolution in Deep Silicon-Based Photon-Counting CT. Academic Radiology, 30, 1153-1163.
https://doi.org/10.1016/j.acra.2022.06.018
[22]  Zhang, C., Wang, Q., Feng, H., Cui, Y., Yu, X. and Shi, G. (2023) Computed-Tomography-Based Radiomic Nomogram for Predicting the Risk of Indeterminate Small (5-20 Mm) Solid Pulmonary Nodules. Diagnostic and Interventional Radiology, 29, 283-290.
https://doi.org/10.4274/dir.2022.22395
[23]  Ren, C., Xu, M., Zhang, J., Zhang, F., Song, S., Sun, Y., et al. (2022) Classification of Solid Pulmonary Nodules Using a Machine-Learning Nomogram Based on 18F-FDG PET/CT Radiomics Integrated Clinicobiological Features. Annals of Translational Medicine, 10, 1265-1265.
https://doi.org/10.21037/atm-22-2647
[24]  Kamiya, A., Murayama, S., Kamiya, H., Yamashiro, T., Oshiro, Y. and Tanaka, N. (2014) Kurtosis and Skewness Assessments of Solid Lung Nodule Density Histograms: Differentiating Malignant from Benign Nodules on CT. Japanese Journal of Radiology, 32, 14-21.
https://doi.org/10.1007/s11604-013-0264-y
[25]  Choi, W., Oh, J.H., Riyahi, S., Liu, C., Jiang, F., Chen, W., et al. (2018) Radiomics Analysis of Pulmonary Nodules in Low‐Dose CT for Early Detection of Lung Cancer. Medical Physics, 45, 1537-1549.
https://doi.org/10.1002/mp.12820
[26]  Chen, Q.-L., Li, M.-M., Xue, T., Peng, H., Shi, J., Li, Y.-Y., et al. (2023) Radiomics Nomogram Integrating Intratumoural and Peritumoural Features to Predict Lymph Node Metastasis and Prognosis in Clinical Stage IA Non-Small Cell Lung Cancer: A Two-Centre Study. Clinical Radiology, 78, e359-e367.
https://doi.org/10.1016/j.crad.2023.02.004
[27]  Tu, S., Wang, C., Pan, K., Wu, Y. and Wu, C. (2018) Localized Thin-Section CT with Radiomics Feature Extraction and Machine Learning to Classify Early-Detected Pulmonary Nodules from Lung Cancer Screening. Physics in Medicine & Biology, 63, Article 065005.
https://doi.org/10.1088/1361-6560/aaafab
[28]  Balagurunathan, Y., Schabath, M.B., Wang, H., Liu, Y. and Gillies, R.J. (2019) Quantitative Imaging Features Improve Discrimination of Malignancy in Pulmonary Nodules. Scientific Reports, 9, Article No. 8528.
https://doi.org/10.1038/s41598-019-44562-z
[29]  Shen, Y., Xu, F., Zhu, W., Hu, H., Chen, T. and Li, Q. (2020) Multiclassifier Fusion Based on Radiomics Features for the Prediction of Benign and Malignant Primary Pulmonary Solid Nodules. Annals of Translational Medicine, 8, 171-171.
https://doi.org/10.21037/atm.2020.01.135
[30]  Liu, Y., Zhou, J., Wu, J., Wang, W., Wang, X., Guo, J., et al. (2022) Development and Validation of Machine Learning Models to Predict Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer: A Multi-Center Retrospective Radiomics Study. Cancer Control, 29, 1-8.
https://doi.org/10.1177/10732748221092926

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133