全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

图书借阅推荐系统设计与实现
The Design and Implementation of a Book Borrowing Recommendation System

DOI: 10.12677/csa.2025.154120, PP. 487-495

Keywords: 协同过滤算法,推荐系统,MySQL,Spring Boot,Vue + Element UI
Collaborative Filtering Algorithm
, Recommendation System, MySQL, Spring Boot, Vue + Element UI

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着互联网技术的不断发展,图书借阅服务也逐渐向线上转移。用户可以通过网络借阅图书,这样就不再局限于实体书库的开放时间和地点,同时也更加方便快捷。但是,随着书籍资源日益丰富、品种日益多样以及借阅总量的扩大,怎样给用户提供人性化的推送服务,怎样针对不同用户的自身偏好推送书籍,实现用户更方便、更快捷、精准地获得到自身所需求的、优质的书籍资源,成为等待解决的问题。因此,发展图书推荐服务、满足用户的个性化阅读需求成为了图书借阅服务面临的一个问题。针对上述情况,该平台基于产品的协同过滤算法,并利用协同筛选的方法可实现基于用户的和基于产品的图书阅读体系。其前后端设计已完全分离,前台使用了Vue + Element以及UI进行设计,而后台则使用了Spring及Boot模式。利用scrapy爬虫框架在豆瓣图书官网爬取网络用户的图书借阅信息,最终系统设计实现用户登录注册、图书借阅推荐、个性化推荐和用户列表及图书列表展示功能,解决了用户无法在众多书目中快速找到目标和高质量图书的问题,提高了查找图书效率,为用户提供了更多选择。
With the continuous development of Internet technology, the book lending service has gradually transferred to the online. Users can borrow books through the network, so it is no longer limited to the physical library of the opening time and place, but also more convenient and fast. However, with more and more books resources, more and more kinds of books and the increase in the number of loans, how to provide personalized recommendation service for users, how to recommend books according to different users’ own preferences, to achieve users more convenient, faster, accurate access to their own needs, high-quality book resources have become a problem waiting to be solved. Therefore, the development of book recommendation service to meet the user’s personalized reading needs has become a book lending service facing a problem. In order to solve these problems, this paper designs a user-based collaborative filtering algorithm, and uses the collaborative filtering recommendation algorithm to realize the user-based and item-based book recommendation system. The front-end and back-end of the system are designed separately. The front-end uses technologies such as Vue + Element UI, and the back-end uses the Spring Boot framework. Scrapy crawler framework is used to crawl the web users’ book lending information on Douban Library. Finally, the system design realizes the functions of user login, book borrowing recommendation, personalized recommendation, user list and book list display. It solves the problem that the user can not find the target and the high-quality books quickly in the numerous bibliographies, improves the efficiency of searching books, and provides more choices for the user.

References

[1]  崔庆才. Python 3网络爬虫开发实战[M]. 北京: 人民邮电出版社, 2018.
[2]  罗刚. 自己动手写网络爬虫[M]. 北京: 清华大学出版社, 2010.
[3]  韩贝, 马明栋, 王得玉. 基于Scrapy框架的爬虫和反爬虫研究[J]. 计算机技术和发展, 2019, 29(2): 139-142.
[4]  张小秋. 基于Scrapy框架的网络爬虫分析与抓取实现[J]. 电脑编程技巧与维护, 2022(2): 18-19, 44.
[5]  徐鲁辉. Hadoop大数据原理与应用实验教程[M]. 西安: 西安电子科技大学出版社, 2020.
[6]  邵方舒. 基于协同过滤及关联规则的个性化图书推荐[D]: [硕士学位论文]. 杭州: 浙江工商大学, 2018.
[7]  肖仁锋. 基于协同过滤的图书馆个性化推荐方法的研究[D]: [硕士学位论文]. 济南: 山东师范大学, 2017.
[8]  李越洋. 基于借阅记录的图书个性化推荐方法研究与应用[D]: [硕士学位论文]. 北京: 北方工业大学, 2017.
[9]  张春. 基于Hadoop平台的个性化图书推荐系统的研究[D]: [硕士学位论文]. 马鞍山: 安徽工业大学, 2017.
[10]  Resnick, P. and Varian, H.R. (1997) Recommender systems. Communications of the ACM, 40, 56-58.
https://doi.org/10.1145/245108.245121
[11]  顾倩. 数据挖掘应用于高校图书馆个性化服务的探讨[J]. 图书馆杂志, 2013, 32(8): 63-65.
[12]  刘军. 数据挖掘在读者阅读需求偏好研究中的应用[J]. 图书馆论坛, 2012, 32(3): 89-93.
[13]  赵恒. 数据挖掘中聚类若干问题研究[D]: [博士学位论文]. 西安: 西安电子科技大学, 2005.
[14]  杨江丽, 高凡, 董若剑. 基于数据挖掘的高校图书馆读者行为研究——以西南交通大学图书馆为例[J]. 图书馆研究, 2013, 43(3): 106-110.
[15]  汪伦, 金朵, 刘明月. 基于用户兴趣度的协同过滤算法[J]. 电脑知识与技术, 2012, 8(19): 4709-4711.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133