|
Pure Mathematics 2025
具有循环群作用的周期量子图Fermi面可约性
|
Abstract:
本文通过将给定的单层周期量子图与具有循环群作用的正三边形做笛卡尔积构造了一类“三层”量子图,其中正三边形被称为连接图,得到“三层”量子图的函数空间分解和算子分解,证明了其Fermi面可约,并将结论推广到连接图为具有循环群作用的正n边形情况。
This paper constructs a class of\"three-layer\" quantum graphs by taking the Cartesian product of a given single-layer periodic quantum graph with an equilateral triangle (referred to as the connecting graph) endowed with a cyclic group action. The function space decomposition and operator decomposition of the resulting\"three-layer\" quantum graphs are derived. It is proven that their Fermi surfaces are reducible. Furthermore, the conclusions are generalized to the case where the connecting graph is a regular n-gon with a cyclic group action.
[1] | 赵佳. 无穷度量图上Sturm-Liouville算子的谱性质[D]: [博士学位论文]. 天津: 天津大学, 2016. |
[2] | Eastham, M.S.P. (1967) Gaps in the Essential Spectrum Associated with Singular Differential
Operators. The Quarterly Journal of Mathematics, 18, 155-168.
https://doi.org/10.1093/qmath/18.1.155 |
[3] | Eastham, M.S.P. (1969) On the Gaps in the Spectrum Associated with Hill’s Equation. Pro ceedings of the American Mathematical Society, 21, 643. https://doi.org/10.2307/20 |
[4] | Eastham, M.S.P. (1973) The Spectral Theory of Periodic Differential Equations. |
[5] | 吴代鸣. 固体物理基础[M]. 北京: 高等教育出版社, 2007. |
[6] | 陆栋, 蒋平, 徐至中. 固体物理学[M]. 上海: 上海科学技术出版社, 2003. |
[7] | Kuchment, P. and Vainberg, B. (1998) On Embedded Eigenvalues of Perturbed Periodic
Schr¨odinger Operators. In: Ramm, A.G., Ed., Spectral and Scattering Theory, Springer US,
67-75. https://doi.org/10.1007/978-1-4899-1552-8_5 |
[8] | 曾谨言. 量子力学教程[M]. 北京: 科学出版社, 2003. |
[9] | Shipman, S.P. (2014) Eigenfunctions of Unbounded Support for Embedded Eigenvalues of
Locally Perturbed Periodic Graph Operators. Communications in Mathematical Physics, 332,
605-626. https://doi.org/10.1007/s00220-014-2113-y |
[10] | Shipman, S.P. (2019) Reducible Fermi Surfaces for Non-Symmetric Bilayer Quantum-Graph
Operators. Journal of Spectral Theory, 10, 33-72. https://doi.org/10.4171/jst/285 |
[11] | Fisher, L., Li, W. and Shipman, S.P. (2021) Reducible Fermi Surface for Multi-Layer Quantum
Graphs Including Stacked Graphene. Communications in Mathematical Physics, 385, 1499-
1534. https://doi.org/10.1007/s00220-021-04120-z |
[12] | 张凯, 赵佳. $n$次中心对称量子图的可约性[J]. 应用数学进展, 2024, 13(4): 1862-1874. https://doi.org/10.12677/AAM.2024.134175 |