全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有脉冲和时滞的四元数神经网络的输入到状态稳定性
Input-to-State Stability of Quaternion-Valued Neural Networks with Impulses and Time Delay

DOI: 10.12677/pm.2025.154140, PP. 381-393

Keywords: 四元数神经网络(QVNN),时滞,脉冲,输入到状态稳定(ISS)
Quaternion-Valued Neural Networks
, Time Delay, Impulses, Input-to-State Stability (ISS)

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究具有脉冲和时滞的四元数神经网络(QVNN)的输入到状态稳定(ISS)。首先,由于四元数乘法不适用于交换律,所以我们将四元数神经网络分解为四个实值神经网络来进行分析,然后通过比较原理和平均脉冲间隔方法,以及利用Lyapunov-Krasovskii函数和一些矩阵不等式,提出了一些充分的条件,以确保所考虑的系统是输入到状态稳定(ISS)。最后,我们给出了一个数值模拟例子及其仿真图来证明理论结果的正确性和有效性。
In this paper, the input-to-state stability of quaternion-valued neural networks (QVNN) with impulses and time delay is investigated. First of all, in virtue of the quaternion multiplication is not suitable for commutative law, QVNN is resolved into four real-valued neural networks (RVNNs). With the help of the comparison principle and average impulse interval approach, and making use of a Lyapunov function and some inequalities, we obtain sufficient conditions to assure the considered system is ISS. Finally, one numerical example and their simulations are given to show the correctness and effectiveness of our theoretical results.

References

[1]  张守武, 王恒, 陈鹏, 等. 神经网络在无人驾驶车辆运动控制中的应用综述[J]. 工程科学学报, 2022, 44(2): 235-243.
[2]  Mohareri, O., Dhaouadi, R. and Rad, A.B. (2012) Indirect Adaptive Tracking Control of a Nonholonomic Mobile Robot via Neural Networks. Neurocomputing, 88, 54-66.
https://doi.org/10.1016/j.neucom.2011.06.035

[3]  Shitong, W. and Min, W. (2006) A New Detection Algorithm (NDA) Based on Fuzzy Cellular Neural Networks for White Blood Cell Detection. IEEE Transactions on Information Technology in Biomedicine, 10, 5-10.
https://doi.org/10.1109/titb.2005.855545

[4]  Cao, J.D. (2001) Global Stability Conditions for Delayed CNNs. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48, 1330-1333.
https://doi.org/10.1109/81.964422

[5]  Xiang, M., Scalzo Dees, B. and Mandic, D.P. (2019) Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach. IEEE Transactions on Neural Networks and Learning Systems, 30, 72-84.
https://doi.org/10.1109/tnnls.2018.2829526

[6]  Ayrulu, B. and Barshan, B. (2001) Neural Networks for Improved Target Differentiation and Localization with Sonar. Neural Networks, 14, 355-373.
https://doi.org/10.1016/s0893-6080(01)00017-x

[7]  Zou, C., Kou, K.I. and Wang, Y. (2016) Quaternion Collaborative and Sparse Representation with Application to Color Face Recognition. IEEE Transactions on Image Processing, 25, 3287-3302.
https://doi.org/10.1109/tip.2016.2567077

[8]  Rajchakit, G., Chanthorn, P., Niezabitowski, M., Raja, R., Baleanu, D. and Pratap, A. (2020) Impulsive Effects on Stability and Passivity Analysis of Memristor-Based Fractional-Order Competitive Neural Networks. Neurocomputing, 417, 290-301.
https://doi.org/10.1016/j.neucom.2020.07.036

[9]  Isokawa, T., Kusakabe, T., Matsui, N. and Peper, F. (2003) Quaternion Neural Network and Its Application. Knowledge-Based Intelligent Information and Engineering Systems: 7th International Conference, KES 2003, Oxford, September 2003, 318-324.
https://doi.org/10.1007/978-3-540-45226-3_44

[10]  Kusamichi, H., Isokawa, T., Matsui, N., et al. (2004) A New Scheme for Color Night Vision by Quaternion Neural Network. Proceedings of the 2nd International Conference on Autonomous Robots and Agents, New Orleans, 26 April-1 May 2004, 1315.
[11]  Pei, S.-C. and Cheng, C.-M. (1997) A Novel Block Truncation Coding of Color Images Using a Quaternion-Moment-Preserving Principle. IEEE Transactions on Communications, 45, 583-595.
https://doi.org/10.1109/26.592558

[12]  Shu, H., Song, Q., Liu, Y., Zhao, Z. and Alsaadi, F.E. (2017) Global μ-Stability of Quaternion-Valued Neural Networks with Non-Differentiable Time-Varying Delays. Neurocomputing, 247, 202-212.
https://doi.org/10.1016/j.neucom.2017.03.052

[13]  Zhang, D., Kou, K.I., Liu, Y. and Cao, J. (2017) Decomposition Approach to the Stability of Recurrent Neural Networks with Asynchronous Time Delays in Quaternion Field. Neural Networks, 94, 55-66.
https://doi.org/10.1016/j.neunet.2017.06.014

[14]  Qi, X., Bao, H. and Cao, J. (2019) Exponential Input-to-State Stability of Quaternion-Valued Neural Networks with Time Delay. Applied Mathematics and Computation, 358, 382-393.
https://doi.org/10.1016/j.amc.2019.04.045

[15]  Zhu, J. and Sun, J. (2018) Stability of Quaternion-Valued Impulsive Delay Difference Systems and Its Application to Neural Networks. Neurocomputing, 284, 63-69.
https://doi.org/10.1016/j.neucom.2018.01.018

[16]  Yang, X., Li, C., Song, Q., Li, H. and Huang, J. (2019) Effects of State-Dependent Impulses on Robust Exponential Stability of Quaternion-Valued Neural Networks under Parametric Uncertainty. IEEE Transactions on Neural Networks and Learning Systems, 30, 2197-2211.
https://doi.org/10.1109/tnnls.2018.2877152

[17]  Popa, C. and Kaslik, E. (2018) Multistability and Multiperiodicity in Impulsive Hybrid Quaternion-Valued Neural Networks with Mixed Delays. Neural Networks, 99, 1-18.
https://doi.org/10.1016/j.neunet.2017.12.006

[18]  Zhong, S. and Liu, X. (2007) Exponential Stability and Periodicity of Cellular Neural Networks with Time Delay. Mathematical and Computer Modelling, 45, 1231-1240.
https://doi.org/10.1016/j.mcm.2006.10.004

[19]  Yunquan, K. and Chunfang, M. (2012) Stability and Existence of Periodic Solutions in Inertial BAM Neural Networks with Time Delay. Neural Computing and Applications, 23, 1089-1099.
https://doi.org/10.1007/s00521-012-1037-8

[20]  Liu, Y., Zhang, D. and Lu, J. (2016) Global Exponential Stability for Quaternion-Valued Recurrent Neural Networks with Time-Varying Delays. Nonlinear Dynamics, 87, 553-565.
https://doi.org/10.1007/s11071-016-3060-2

[21]  Li, H., Jiang, H. and Cao, J. (2020) Global Synchronization of Fractional-Order Quaternion-Valued Neural Networks with Leakage and Discrete Delays. Neurocomputing, 385, 211-219.
https://doi.org/10.1016/j.neucom.2019.12.018

[22]  Tu, Z., Yang, X., Wang, L. and Ding, N. (2019) Stability and Stabilization of Quaternion-Valued Neural Networks with Uncertain Time-Delayed Impulses: Direct Quaternion Method. Physica A: Statistical Mechanics and Its Applications, 535, Article ID: 122358.
https://doi.org/10.1016/j.physa.2019.122358

[23]  Jiang, Z. and Wang, Y. (2001) Input-to-State Stability for Discrete-Time Nonlinear Systems. Automatica, 37, 857-869.
https://doi.org/10.1016/s0005-1098(01)00028-0

[24]  Wang, Y., Sun, X. and Wu, B. (2015) Lyapunov-Krasovskii Functionals for Input‐to‐State Stability of Switched Non‐linear Systems with Time‐Varying Input Delay. IET Control Theory & Applications, 9, 1717-1722.
https://doi.org/10.1049/iet-cta.2014.0526

[25]  Angeli, D., Sontag, E.D. and Wang, Y. (2000) A Characterization of Integral Input-to-State Stability. IEEE Transactions on Automatic Control, 45, 1082-1097.
https://doi.org/10.1109/9.863594

[26]  Wu, X., Tang, Y. and Zhang, W. (2016) Input-to-State Stability of Impulsive Stochastic Delayed Systems under Linear Assumptions. Automatica, 66, 195-204.
https://doi.org/10.1016/j.automatica.2016.01.002

[27]  Wang, Y., Li, X. and Song, S. (2022) Input-to-State Stabilization of Nonlinear Impulsive Delayed Systems: An Observer-Based Control Approach. IEEE/CAA Journal of Automatica Sinica, 9, 1273-1283.
https://doi.org/10.1109/jas.2022.105422

[28]  Yang, Z., Zhou, W. and Huang, T. (2013) Exponential Input-to-State Stability of Recurrent Neural Networks with Multiple Time-Varying Delays. Cognitive Neurodynamics, 8, 47-54.
https://doi.org/10.1007/s11571-013-9258-9

[29]  Hespanha, J.P., Liberzon, D. and Teel, A.R. (2008) Lyapunov Conditions for Input-to-State Stability of Impulsive Systems. Automatica, 44, 2735-2744.
https://doi.org/10.1016/j.automatica.2008.03.021

[30]  Chen, X., Li, Z., Song, Q., Hu, J. and Tan, Y. (2017) Robust Stability Analysis of Quaternion-Valued Neural Networks with Time Delays and Parameter Uncertainties. Neural Networks, 91, 55-65.
https://doi.org/10.1016/j.neunet.2017.04.006

[31]  Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994) Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9781611970777

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133