|
Pure Mathematics 2025
小顶点树的拉普拉斯积和式及比率
|
Abstract:
对于一个图G,若其连通且无圈,我们就称G是一棵树,记为T。本文计算小顶点树的拉普拉斯矩阵积和式以及拉普拉斯比率,并且得到一些限定参数的大小的结果。
For a graph G, if it is connected and acyclic, we call G a tree, denoted as T. In this paper, the permanents of the Laplacian matrices and the Laplacian ratios of small vertex trees are calculated, and some results on limiting the magnitudes of certain parameters are obtained.
[1] | Valiant, L.G. (1979) The Complexity of Computing the Permanent. Theoretical Computer
Science, 8, 189-201. https://doi.org/10.1016/0304-3975(79)90044-6 |
[2] | van Dam, E.R. and Haemers, W.H. (2003) Which Graphs Are Determined by Their Spectrum?
Linear Algebra and its Applications, 373, 241-272.
https://doi.org/10.1016/s0024-3795(03)00483-x |
[3] | Cvetkovic, D. (2005) Signless Laplacians and Line Graphs. Bulletin: Classe des Sciences Math ematiques et Natturalles, 131, 85-92. https://doi.org/10.2298/bmat0530085c |
[4] | Cvetkovi′c, D., Rowlinson, P. and Simi′c, S.K. (2007) Signless Laplacians of Finite Graphs.
Linear Algebra and Its Applications, 423, 155-171. https://doi.org/10.1016/j.laa.2007.01.009 |
[5] | Cvetkovic, D., Rowlinson, P. and Simic, S. (2004) Spectral Generalizations of Line Graphs.
On Graphs with Least Eigenvalue-2. Cambridge University Press.
https://doi.org/10.1017/cbo9780511751752 |
[6] | Haemers, W.H. and Spence, E. (2004) Enumeration of Cospectral Graphs. European Journal
of Combinatorics, 25, 199-211. https://doi.org/10.1016/s0195-6698(03)00100-8 |
[7] | Cash, G.G. and Gutman, I. (2004) The Laplacian Permanental Polynomial: Formulas and
Algorithms. MATCH Communications in Mathematical and in Computer Chemistry, 51, 129-
136. |
[8] | Liu, S. (2019) On the (Signless) Laplacian Permanental Polynomials of Graphs. Graphs and
Combinatorics, 35, 787-803. https://doi.org/10.1007/s00373-019-02033-2 |
[9] | Brualdi, R.A. and Goldwasser, J.L. (1984) Permanent of the Laplacian Matrix of Trees and
Bipartite Graphs. Discrete Mathematics, 48, 1-21.
https://doi.org/10.1016/0012-365x(84)90127-4 |
[10] | Goldwasser, J.L. (1986) Permanent of the Laplacian Matrix of Trees with a Given Matching.
Discrete Mathematics, 61, 197-212. https://doi.org/10.1016/0012-365x(86)90091-9 |
[11] | Wu, T. and So, W. (2021) Permanental Sums of Graphs of Extreme Sizes. Discrete Mathe matics, 344, Article 112353. https://doi.org/10.1016/j.disc.2021.112353 |
[12] | Brouwer, A.E. and Haemers, W.H. (2011) Spectra of Graphs. Springer Science Business Media. |