全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离子液体基固态电解质的研究进展
Research Progress of Ionic Liquid Based Solid Electrolyte

DOI: 10.12677/ojns.2025.133045, PP. 432-438

Keywords: 离子液体,固态电解质,固态锂电池,固态钠电池,固态超级电容器
Ionic Liquid
, Solid Electrolyte, Solid Lithium Battery, Solid Sodium Battery, Solid Supercapacitor

Full-Text   Cite this paper   Add to My Lib

Abstract:

固态电池由于具备高的理论能量密度和高安全性,被视为下一代储能技术重要发展方向。固态电解质是固态电池关键组成部分,其性能直接影响了固态电池的发展。离子液体基固态电解质具备高的离子电导率、高的化学稳定性和良好的机械性能,在固态电池领域具备巨大的潜力。本文重点论述了离子液体基固态电解质的研究进展,对离子液体基固态电解质的类型进行归纳总结,并详细介绍了其在固态锂电池、固态钠电池、固态超级电容器三种储能技术中的应用优势。最后,对离子液体基固态电解质的研究方向进行了展望。
Solid-state batteries are widely regarded as a key advancement in next-generation energy storage due to their high theoretical energy density and superior safety. A crucial component of these batteries is the solid-state electrolyte, which directly impacts their performance and development. Among various electrolyte options, ionic liquid-based solid-state electrolytes have gained significant attention due to their high ionic conductivity, excellent chemical stability, and robust mechanical properties. This paper reviews the research progress in the development of ionic liquid-based solid-state electrolytes, categorizes their different types, and examines their advantages in three major energy storage technologies: solid-state lithium batteries, solid-state sodium batteries, and solid-state supercapacitors. Finally, future research directions and challenges in this field are discussed.

References

[1]  Li, Z., Zhu, S., Gao, S., He, Y., Ding, H., Yang, D., et al. (2024) Fireproof Solid Polymer Electrolyte with Chemically Bonded Phosphorus toward Stable and Safe Lithium-Metal Battery. Advanced Functional Materials, 34, Article 2409836.
https://doi.org/10.1002/adfm.202409836
[2]  Zhang, H., Xu, H., Xiao, Z., Dong, G., Cheng, Y., Fei, F., et al. (2024) Nanowires for Solid-State Lithium Batteries. Advanced Functional Materials, 35, Article 2412548.
https://doi.org/10.1002/adfm.202412548
[3]  Chen, W., Wang, K., Li, Y., Chen, J., Wang, H., Li, L., et al. (2024) Minimize the Electrode Concentration Polarization for High-Power Lithium Batteries. Advanced Functional Materials, 34, Article 2410926.
https://doi.org/10.1002/adfm.202410926
[4]  Liang, H., Wang, L., Wang, A., Song, Y., Wu, Y., Yang, Y., et al. (2023) Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review. Nano-Micro Letters, 15, Article No. 42.
https://doi.org/10.1007/s40820-022-00996-1
[5]  Kalnaus, S., Dudney, N.J., Westover, A.S., Herbert, E. and Hackney, S. (2023) Solid-State Batteries: The Critical Role of Mechanics. Science, 381, eabg5998.
https://doi.org/10.1126/science.abg5998
[6]  Yu, T., Liu, Y., Li, H., Sun, Y., Guo, S. and Zhou, H. (2025) Ductile Inorganic Solid Electrolytes for All-Solid-State Lithium Batteries. Chemical Reviews, 125, 3595-3662.
https://doi.org/10.1021/acs.chemrev.4c00894
[7]  Guo, Z., Zhao, H., Xiao, Y., Liang, S., Zhang, X., Wang, N., et al. (2025) Recent Progress of Thin Solid-State Electrolytes and Applications for Solid-State Lithium Pouch Cells. Materials Today Energy, 48, Article 101801.
https://doi.org/10.1016/j.mtener.2025.101801
[8]  Feng, J., Wang, Y., Xu, Y., Sun, Y., Tang, Y. and Yan, X. (2021) Ion Regulation of Ionic Liquid Electrolytes for Supercapacitors. Energy & Environmental Science, 14, 2859-2882.
https://doi.org/10.1039/d0ee04002a
[9]  Liu, X., Mariani, A., Diemant, T., Di Pietro, M.E., Dong, X., Mele, A., et al. (2023) Reinforcing the Electrode/Electrolyte Interphases of Lithium Metal Batteries Employing Locally Concentrated Ionic Liquid Electrolytes. Advanced Materials, 36, Article 2309062.
https://doi.org/10.1002/adma.202309062
[10]  He, H., Wang, L., Al-Abbasi, M., Cao, C., Li, H., Xu, Z., et al. (2024) Interface Engineering on Constructing Physical and Chemical Stable Solid-State Electrolyte toward Practical Lithium Batteries. Energy & Environmental Materials, 7, e12699.
https://doi.org/10.1002/eem2.12699
[11]  Zhou, M., Liu, W., Su, Q., Zeng, J., Jiang, X., Wu, X., et al. (2024) Ionic Liquid Additive Mitigating Lithium Loss and Aluminum Corrosion for High-Voltage Anode-Free Lithium Metal Batteries. ACS Nano, 18, 32959-32972.
https://doi.org/10.1021/acsnano.4c13203
[12]  Zhang, S., Wu, S., Hwang, J., Matsumoto, K. and Hagiwara, R. (2024) Unprotected Organic Cations—The Dilemma of Highly Li-Concentrated Ionic Liquid Electrolytes. Journal of the American Chemical Society, 146, 8352-8361.
https://doi.org/10.1021/jacs.3c14110
[13]  Zhang, S., Sun, Q., Martínez-Alanis, P.R., Chen, G., Li, J., Zeng, G., et al. (2025) Towards Flame Retardant High-Performance Solid-State Lithium Metal Batteries: Poly (Ionic Liquid)-Based Lithiophilic Ion-Conductive Interfaces and Humidity Tolerant Binders. Nano Energy, 133, Article 110424.
https://doi.org/10.1016/j.nanoen.2024.110424
[14]  Tang, X., Lv, S., Jiang, K., Zhou, G. and Liu, X. (2022) Recent Development of Ionic Liquid-Based Electrolytes in Lithium-Ion Batteries. Journal of Power Sources, 542, Article 231792.
https://doi.org/10.1016/j.jpowsour.2022.231792
[15]  Ma, X., Yu, J., Hu, Y., Texter, J. and Yan, F. (2023) Ionic Liquid/Poly (Ionic Liquid)-Based Electrolytes for Lithium Batteries. Industrial Chemistry & Materials, 1, 39-59.
https://doi.org/10.1039/d2im00051b
[16]  Xu, F., Tian, B., Cui, K., Liu, M., Yao, Y., Li, H., et al. (2024) Fortified Lubricating Response to Sustainable PEG System from Protic Ionic Liquid and Their Strong Hydrogen Bonding Network. ACS Sustainable Chemistry & Engineering, 12, 5343-5355.
https://doi.org/10.1021/acssuschemeng.4c00798
[17]  Wang, D., Jin, B., Chen, S., Ren, Y., Hou, Y., Gao, X., et al. (2023) Ionic Liquid Modified Carbon Nanotubes Doped Gel Polymer Electrolyte for Fast Charging Lithium Metal Batteries. Journal of Power Sources, 564, Article 232847.
https://doi.org/10.1016/j.jpowsour.2023.232847
[18]  Kondou, S., Abdullah, M., Popov, I., Martins, M.L., O’Dell, L.A., Ueda, H., et al. (2024) Poly (Ionic Liquid) Electrolytes at an Extreme Salt Concentration for Solid-State Batteries. Journal of the American Chemical Society, 146, 33169-33178.
https://doi.org/10.1021/jacs.4c12616
[19]  Huninik, P., Szyling, J., Czapik, A. and Walkowiak, J. (2023) Organocatalytic Hydroboration of Olefins in Pyrrolidinium Ionic Liquids. Green Chemistry, 25, 3715-3722.
https://doi.org/10.1039/d2gc04163d
[20]  Balo, L., Gupta, H., Singh, S.K., Singh, V.K., Kataria, S. and Singh, R.K. (2018) Performance of EMIMFSI Ionic Liquid Based Gel Polymer Electrolyte in Rechargeable Lithium Metal Batteries. Journal of Industrial and Engineering Chemistry, 65, 137-145.
https://doi.org/10.1016/j.jiec.2018.04.022
[21]  Choi, Y.G., Shin, J.C., Park, A., Jeon, Y.M., Kim, J.I., Kim, S., et al. (2021) Pyrrolidinium-Peg Ionic Copolyester: Li-Ion Accelerator in Polymer Network Solid-State Electrolytes. Advanced Energy Materials, 11, Article 2102660.
https://doi.org/10.1002/aenm.202102660
[22]  Liang, L., Yuan, W., Chen, X. and Liao, H. (2021) Flexible, Nonflammable, Highly Conductive and High-Safety Double Cross-Linked Poly (Ionic Liquid) as Quasi-Solid Electrolyte for High Performance Lithium-Ion Batteries. Chemical Engineering Journal, 421, Article 130000.
https://doi.org/10.1016/j.cej.2021.130000
[23]  Huang, W., Bi, Z., Zhao, N., Sun, Q. and Guo, X. (2021) Chemical Interface Engineering of Solid Garnet Batteries for Long-Life and High-Rate Performance. Chemical Engineering Journal, 424, Article 130423.
https://doi.org/10.1016/j.cej.2021.130423
[24]  Wang, X., Wang, Y., Wu, Y., Fan, Y. and Tian, Y. (2023) Dual-Interlayers Constructed by Ti3C2Tx/Ionic-Liquid for Enhanced Performance of Solid Garnet Batteries. Journal of Energy Chemistry, 78, 47-55.
https://doi.org/10.1016/j.jechem.2022.11.052
[25]  Pervez, S.A., Kim, G., Vinayan, B.P., Cambaz, M.A., Kuenzel, M., Hekmatfar, M., et al. (2020) Overcoming the Interfacial Limitations Imposed by the Solid-Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers. Small, 16, Article 2000279.
https://doi.org/10.1002/smll.202000279
[26]  Xie, Z., Wu, Z., An, X., Yoshida, A., Wang, Z., Hao, X., et al. (2019) Bifunctional Ionic Liquid and Conducting Ceramic Co-Assisted Solid Polymer Electrolyte Membrane for Quasi-Solid-State Lithium Metal Batteries. Journal of Membrane Science, 586, 122-129.
https://doi.org/10.1016/j.memsci.2019.05.066
[27]  Qin, S., Cao, Y., Zhang, J., Ren, Y., Sun, C., Zhang, S., et al. (2023) Polymer Dispersed Ionic Liquid Electrolytes with High Ionic Conductivity for Ultrastable Solid-State Lithium Batteries. Carbon Energy, 5, e316. Https://doi.org/10.1002/cey2.316
[28]  Chen, B., Xu, K., Tang, L., Li, Q., Chen, Q. and Chen, L. (2024) In Operando Visualization of Polymerized Ionic Liquid Electrolyte Migration in Solid-State Lithium Batteries. ACS Energy Letters, 10, 305-312.
https://doi.org/10.1021/acsenergylett.4c02430
[29]  Appetecchi, G.B., Kim, G., Montanino, M., Carewska, M., Marcilla, R., Mecerreyes, D., et al. (2010) Ternary Polymer Electrolytes Containing Pyrrolidinium-Based Polymeric Ionic Liquids for Lithium Batteries. Journal of Power Sources, 195, 3668-3675.
https://doi.org/10.1016/j.jpowsour.2009.11.146
[30]  Kim, H.W., Manikandan, P., Lim, Y.J., Kim, J.H., Nam, S. and Kim, Y. (2016) Hybrid Solid Electrolyte with the Combination of Li7La3Zr2O12 Ceramic and Ionic Liquid for High Voltage Pseudo-Solid-State Li-Ion Batteries. Journal of Materials Chemistry A, 4, 17025-17032.
https://doi.org/10.1039/c6ta07268b
[31]  Wu, J. and Guo, X. (2019) Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. Small, 15, Article 1804413.
https://doi.org/10.1002/smll.201804413
[32]  Yang, P., Wu, Z., Li, M., Zhang, C., Wang, Y., Zhu, Y., et al. (2024) Multifunctional Nanocomposite Polymer-Integrated Ca-Doped CeO2 Electrolyte for Robust and High-Rate All-Solid-State Sodium-Ion Batteries. Angewandte Chemie International Edition, 64, e202417778.
https://doi.org/10.1002/anie.202417778
[33]  Lin, X., Zhang, S., Yang, M., Xiao, B., Zhao, Y., Luo, J., et al. (2024) A Family of Dual-Anion-Based Sodium Superionic Conductors for All-Solid-State Sodium-Ion Batteries. Nature Materials, 24, 83-91.
https://doi.org/10.1038/s41563-024-02011-x
[34]  Xiang, L., Gao, Y., Ding, Y., Li, X., Jiang, D., Wu, C., et al. (2024) Self-Forming Na3P/Na2O Interphase on a Novel Biphasic Na3Zr2Si2PO12/Na3PO4 Solid Electrolyte for Long-Cycling Solid-State Na-Metal Batteries. Energy Storage Materials, 73, Article 103831.
https://doi.org/10.1016/j.ensm.2024.103831
[35]  Song, S., Kotobuki, M., Zheng, F., Xu, C., Savilov, S.V., Hu, N., et al. (2017) A Hybrid Polymer/Oxide/Ionic-Liquid Solid Electrolyte for Na-Metal Batteries. Journal of Materials Chemistry A, 5, 6424-6431.
https://doi.org/10.1039/c6ta11165c
[36]  Kumar, D. and Hashmi, S.A. (2010) Ionic Liquid-Based Sodium Ion Conducting Gel Polymer Electrolytes. Solid State Ionics, 181, 416-423.
https://doi.org/10.1016/j.ssi.2010.01.025
[37]  Wang, D., Takiyama, M., Hwang, J., Matsumoto, K. and Hagiwara, R. (2023) A Hexafluorophosphate-Based Ionic Liquid as Multifunctional Interfacial Layer between high Voltage Positive Electrode and Solid-State Electrolyte for Sodium Secondary Batteries. Advanced Energy Materials, 13, Article 2301020.
https://doi.org/10.1002/aenm.202301020
[38]  Li, Z., Li, B., Yu, C., Wang, H. and Li, Q. (2023) Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications. Advanced Science, 10, Article 2206605.
https://doi.org/10.1002/advs.202206605
[39]  Chen, Y., Wang, X., Wang, H., Fu, M. and Yang, H. (2025) Design and Implementation of a Dual-Mode Supercapacitor fast Charger Employing Continuous and Fine-Tuned Pulse Currents. In: IEEE Transactions on Circuits and Systems I: Regular Papers, Institute of Electrical and Electronics Engineers Inc., 1-12.
[40]  Sun, Y., Li, T., Liu, X., Liu, Y., Zada, A., Han, Y., Han, Y., Chen, J. and Dang, A. (2025) Exceptional Suppression of the Self-Discharge Behavior of Supercapacitors by Precisely Tuning the Surface Assets of MXene by a Spontaneous Single-Atom Doping Strategy. Nano Letters, 25, 3875-3882.
[41]  Ayalneh Tiruye, G., Muñoz-Torrero, D., Palma, J., Anderson, M. and Marcilla, R. (2015) All-Solid-State Supercapacitors Operating at 3.5 V by Using Ionic Liquid-Based Polymer Electrolytes. Journal of Power Sources, 279, 472-480.
https://doi.org/10.1016/j.jpowsour.2015.01.039
[42]  Tu, Q.M., Fan, L.Q., Pan, F., Huang, J.L., Gu, Y., Lin, J.M., Huang, M.L., Huang, Y.F. and Wu, J.H. (2018) Design of a Novel Redox-Active Gel Polymer Electrolyte with a Dual-Role Ionic Liquid for Flexible Supercapacitors. Electrochimica Acta, 268, 562-568.
https://doi.org/10.1016/j.electacta.2018.02.008
[43]  Tang, W., Dong, K., Chen, Z., Duan, Y., Sun, Q., Li, X., Zhai, D., Lv, T. and Chen, T. (2024) A Microphase-Separation Ion-Gel Electrolyte for Highly Stretchable All-Solid-State Supercapacitors. Chemical Engineering Journal, 501, Article 157726.
https://doi.org/10.1016/j.cej.2024.157726

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133