全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青藏高原东南缘地区高山湖泊沉积硅藻对气候变暖和大气氮沉降的响应
Response of Sedimentary Diatoms from Alpine Lakes in the Southeastern Margin of the Qinghai-Xizang Plateau to Climate Warming and Atmospheric Nitrogen Deposition

DOI: 10.12677/gser.2025.142045, PP. 456-463

Keywords: 青藏高原东南缘,高山湖泊,硅藻,气候变暖,大气氮沉降
Southeast Margin of the Qinghai-Xizang Plateau
, Alpine Lakes, Diatoms, Climate Warming, Atmospheric Nitrogen Deposition

Full-Text   Cite this paper   Add to My Lib

Abstract:

青藏高原东南缘地区的高山湖泊因其独特的地理位置和生态环境,对全球变化极为敏感。本研究通过综合分析该地区高山湖泊沉积硅藻对气候变暖和大气氮沉降的响应,探讨了硅藻群落如何在气候变暖和氮沉降的双重压力下发生变化,并揭示了其生态适应机制。研究表明,气候变暖和大气氮沉降显著影响了高山湖泊的硅藻群落,主要表现为耐寒底栖硅藻的减少和耐温浮游硅藻的增加,以及富营养指示种的扩张。这些变化不仅反映了湖泊生态系统对环境变化的适应机制,也为理解区域环境变化的历史模式和未来趋势提供了科学依据。未来研究应加强长期监测网络建设、采用跨学科方法、开展区域对比与全球关联研究,以深化对高山湖泊生态系统响应机制的理解,并为生态保护提供科学依据。
Alpine lakes in the southeastern margin of the Qinghai-Xizang Plateau are extremely sensitive to global changes due to their unique geographical location and ecological environment. In this study, by comprehensively analyzing the response of diatoms deposited in alpine lakes in this region to climate warming and atmospheric nitrogen deposition, we explored how diatom communities changed under the dual pressure of climate warming and nitrogen deposition, and revealed their ecological adaptation mechanisms. The study showed that climate warming and atmospheric nitrogen deposition significantly affected the diatom communities in alpine lakes, which were mainly manifested by the decrease of cold-tolerant benthic diatoms and the increase of temperature-tolerant planktonic diatoms, as well as the expansion of eutrophic indicator species. These changes not only reflect the adaptation mechanism of lake ecosystems to environmental changes, but also provide a scientific basis for understanding the historical patterns and future trends of regional environmental changes. Future research should strengthen the long-term monitoring network, adopt interdisciplinary approaches, and conduct regional comparative and global correlation studies to deepen the understanding of the response mechanisms of alpine lake ecosystems and provide a scientific basis for ecological conservation.

References

[1]  Battarbee, R.W., Grytnes, J., Thompson, R., Appleby, P.G., Catalan, J., Korhola, A., et al. (2002) Comparing Palaeolimnological and Instrumental Evidence of Climate Change for Remote Mountain Lakes over the Last 200 Years. Journal of Paleolimnology, 28, 161-179.
https://doi.org/10.1023/a:1020384204940

[2]  Moser, K.A., Baron, J.S., Brahney, J., Oleksy, I.A., Saros, J.E., Hundey, E.J., et al. (2019) Mountain Lakes: Eyes on Global Environmental Change. Global and Planetary Change, 178, 77-95.
https://doi.org/10.1016/j.gloplacha.2019.04.001

[3]  Nevalainen, L. and Luoto, T.P. (2012) Faunal (Chironomidae, Cladocera) Responses to Post-Little Ice Age Climate Warming in the High Austrian Alps. Journal of Paleolimnology, 48, 711-724.
https://doi.org/10.1007/s10933-012-9640-3

[4]  Smol, J.P., Wolfe, A.P., Birks, H.J.B., Douglas, M.S.V., Jones, V.J., Korhola, A., et al. (2005) Climate-Driven Regime Shifts in the Biological Communities of Arctic Lakes. Proceedings of the National Academy of Sciences, 102, 4397-4402.
https://doi.org/10.1073/pnas.0500245102

[5]  Immerzeel, W.W., Lutz, A.F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., et al. (2019) Importance and Vulnerability of the World’s Water Towers. Nature, 577, 364-369.
https://doi.org/10.1038/s41586-019-1822-y

[6]  Giambastiani, B.M.S. (2007) Evoluzione Idrologica ed Idrogeologica Della Pineta di San Vitale (Ravenna). Ph.D. Thesis, Bologna University.
[7]  Zhang, Y., Song, L., Liu, X.J., Li, W.Q., Lü, S.H., Zheng, L.X., et al. (2012) Atmospheric Organic Nitrogen Deposition in China. Atmospheric Environment, 46, 195-204.
https://doi.org/10.1016/j.atmosenv.2011.09.080

[8]  Battarbee, R.W. (2000) Palaeolimnological Approaches to Climate Change, with Special Regard to the Biological Record. Quaternary Science Reviews, 19, 107-124.
https://doi.org/10.1016/s0277-3791(99)00057-8

[9]  Rühland, K.M., Paterson, A.M. and Smol, J.P. (2015) Lake Diatom Responses to Warming: Reviewing the Evidence. Journal of Paleolimnology, 54, 1-35.
https://doi.org/10.1007/s10933-015-9837-3

[10]  Winder, M. and Sommer, U. (2012) Phytoplankton Response to a Changing Climate. Hydrobiologia, 698, 5-16.
https://doi.org/10.1007/s10750-012-1149-2

[11]  Saros, J.E., Stone, J.R., Pederson, G.T., Slemmons, K.E.H., Spanbauer, T., Schliep, A., et al. (2012) Climate‐Induced Changes in Lake Ecosystem Structure Inferred from Coupled Neo‐ and Paleoecological Approaches. Ecology, 93, 2155-2164.
https://doi.org/10.1890/11-2218.1

[12]  Saros, J.E., Clow, D.W., Blett, T. and Wolfe, A.P. (2010) Critical Nitrogen Deposition Loads in High-Elevation Lakes of the Western US Inferred from Paleolimnological Records. Water, Air, & Soil Pollution, 216, 193-202.
https://doi.org/10.1007/s11270-010-0526-6

[13]  Wolfe, A.P., Baron, J.S. and Cornett, R.J. (2001) Anthropogenic Nitrogen Deposition Induces Rapid Ecological Changes in Alpine Lakes of the Colorado Front Range (USA). Journal of Paleolimnology, 25, 1-7.
https://doi.org/10.1023/a:1008129509322

[14]  Elser, J.J., Kyle, M., Steger, L., Nydick, K.R. and Baron, J.S. (2009) Nutrient Availability and Phytoplankton Nutrient Limitation across a Gradient of Atmospheric Nitrogen Deposition. Ecology, 90, 3062-3073.
https://doi.org/10.1890/08-1742.1

[15]  Bergström, A. and Jansson, M. (2006) Atmospheric Nitrogen Deposition Has Caused Nitrogen Enrichment and Eutrophication of Lakes in the Northern Hemisphere. Global Change Biology, 12, 635-643.
https://doi.org/10.1111/j.1365-2486.2006.01129.x

[16]  Hobbs, W.O., Lafrancois, B.M., Stottlemyer, R., Toczydlowski, D., Engstrom, D.R., Edlund, M.B., et al. (2016) Nitrogen Deposition to Lakes in National Parks of the Western Great Lakes Region: Isotopic Signatures, Watershed Retention, and Algal Shifts. Global Biogeochemical Cycles, 30, 514-533.
https://doi.org/10.1002/2015gb005228

[17]  Catalan, J., Pla-Rabés, S., Wolfe, A.P., Smol, J.P., Rühland, K.M., Anderson, N.J., et al. (2013) Global Change Revealed by Palaeolimnological Records from Remote Lakes: A Review. Journal of Paleolimnology, 49, 513-535.
https://doi.org/10.1007/s10933-013-9681-2

[18]  Wischnewski, J., Mackay, A.W., Appleby, P.G., Mischke, S. and Herzschuh, U. (2011) Modest Diatom Responses to Regional Warming on the Southeast Tibetan Plateau during the Last Two Centuries. Journal of Paleolimnology, 46, 215-227.
https://doi.org/10.1007/s10933-011-9533-x

[19]  Wang, Q., Yang, X., Anderson, N.J. and Ji, J. (2015) Diatom Seasonality and Sedimentation in a Subtropical Alpine Lake (Lugu Hu, Yunnan-Sichuan, Southwest China). Arctic, Antarctic, and Alpine Research, 47, 461-472.
https://doi.org/10.1657/aaar0014-039

[20]  Chen, G., Selbie, D.T., Griffiths, K., Sweetman, J.N., Botrel, M., Taranu, Z.E., et al. (2014) Proximity to Ice Fields and Lake Depth as Modulators of Paleoclimate Records: A Regional Study from Southwest Yukon, Canada. Journal of Paleolimnology, 52, 185-200.
https://doi.org/10.1007/s10933-014-9787-1

[21]  He, J., Liu, J., Rühland, K.M., Zhang, J., Chen, Z., Dong, H., et al. (2022) Responses of Lake Diatoms to Rapid 21st Century Warming on the Southeastern Tibetan Plateau. Anthropocene, 39, Article 100345.
https://doi.org/10.1016/j.ancene.2022.100345

[22]  Winder, M., Reuter, J.E. and Schladow, S.G. (2008) Lake Warming Favours Small-Sized Planktonic Diatom Species. Proceedings of the Royal Society B: Biological Sciences, 276, 427-435.
https://doi.org/10.1098/rspb.2008.1200

[23]  Liao, M., Herzschuh, U., Wang, Y., Liu, X., Ni, J. and Li, K. (2020) Lake Diatom Response to Climate Change and Sedimentary Events on the Southeastern Tibetan Plateau during the Last Millennium. Quaternary Science Reviews, 241, Article 106409.
https://doi.org/10.1016/j.quascirev.2020.106409

[24]  Hu, Z., Anderson, N.J., Yang, X. and McGowan, S. (2014) Catchment‐Mediated Atmospheric Nitrogen Deposition Drives Ecological Change in Two Alpine Lakes in SE Tibet. Global Change Biology, 20, 1614-1628.
https://doi.org/10.1111/gcb.12435

[25]  Kang, W., Chen, G., Wang, J., Huang, L., Wang, L., Li, R., et al. (2019) Assessing the Impact of Long-Term Changes in Climate and Atmospheric Deposition on a Shallow Alpine Lake from Southeast Tibet. Science of The Total Environment, 650, 713-724.
https://doi.org/10.1016/j.scitotenv.2018.09.066

[26]  Zhang, C., Kong, X., Xue, B., Zhao, C., Yang, X., Cheng, L., et al. (2023) Synergistic Effects of Climate Warming and Atmospheric Nutrient Deposition on the Alpine Lake Ecosystem in the South-Eastern Tibetan Plateau during the Anthropocene. Frontiers in Ecology and Evolution, 11, Article 1119840.
https://doi.org/10.3389/fevo.2023.1119840

[27]  Kaufman, D.S., Schneider, D.P., McKay, N.P., Ammann, C.M., Bradley, R.S., Briffa, K.R., et al. (2009) Recent Warming Reverses Long-Term Arctic Cooling. Science, 325, 1236-1239.
https://doi.org/10.1126/science.1173983

[28]  Thompson, R., Kamenik, C. and Schmidt, R. (2005) Ultra-Sensitive Alpine Lakes and Climate Change. Journal of Limnology, 64, 139-152.
https://doi.org/10.4081/jlimnol.2005.139

[29]  Holtgrieve, G.W., Schindler, D.E., Hobbs, W.O., Leavitt, P.R., Ward, E.J., Bunting, L., et al. (2011) A Coherent Signature of Anthropogenic Nitrogen Deposition to Remote Watersheds of the Northern Hemisphere. Science, 334, 1545-1548.
https://doi.org/10.1126/science.1212267

[30]  Smol, J.P. and Douglas, M.S. (2007) From Controversy to Consensus: Making the Case for Recent Climate Change in the Arctic Using Lake Sediments. Frontiers in Ecology and the Environment, 5, 466-474.
https://doi.org/10.1890/060162

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133