全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Himawari-8卫星数据的内蒙古地区云参量时空变化特征研究
Study on Spatiotemporal Variation of Cloud Parameters over the Inner Mongolia Based on Himawari-8 Satellite Data

DOI: 10.12677/gser.2025.142044, PP. 435-455

Keywords: Himawari-8云产品,云参量,时空分布,内蒙古地区
Himawari-8 Cloud Products
, Cloud Parameters, Spatiotemporal Distribution, Inner Mongolia Region

Full-Text   Cite this paper   Add to My Lib

Abstract:

全球气候变化正逐渐威胁到人类的生存环境及社会经济的可持续发展。云作为调节气候的重要因素之一,是气温及降水等气象因子发生变化的主要原因,其形成与变化对调节地球气候起着重要作用。其中,云特性变化可能对气候产生重大影响,反之,气候变化也会引起云特性的调整。本文利用Himawari-8云产品数据分析了2015年7月~2020年6月内蒙古地区的云特性参量,包括不同类型云的云量、云光学厚度和云有效粒子半径等时空变化特征,因此得出以下主要结论。内蒙古地区总云中高云所占比例相对较大,在年平均总云云量、云光学厚度和云有效离子半径之中高云的贡献率分别达到38.09%、51.46%、63.02%。在年尺度上,总云主要分布在内蒙古东部和中部地区,呈现出云参量从东北向西南减少的特征;高云主要分布在内蒙古东部、北部和中部地区。在季节尺度上,总云和高云的云量、云光学厚度和云有效粒子半径夏季达到最大值,夏季总云云量的平均值达到63%,总云光学厚度的平均值达到9.44,总云有效离子半径的平均值达到9.37 μm。夏季总云与高云的云量主要分布在内蒙古中、东部地区,夏季总云与高云的云量呈增加趋势的区域主要分布在内蒙古西部地区,冬季总云和高云的云光学厚度和云有效离子半径值相对较少,主要分布在内蒙古东北部地区。
Global climate change is gradually threatening the living environment of human beings and the sustainable development of the social economy. As one of the important factors regulating climate, the cloud is the main reason for the change of meteorological factors such as temperature and precipitation, and its formation and change play an important role in regulating the earth’s climate. Among them, the change in cloud characteristics may have a significant impact on the climate, and conversely, climate change will also cause the adjustment of cloud characteristics. In this paper, the Himawari-8 cloud product data is used to analyze the cloud characteristic parameters in Inner Mongolia from July 2015 to June 2020, including the temporal and spatial variation characteristics of cloud amount, cloud optical thickness and cloud effective particle radius of different cloud types, so the following main conclusions are drawn. The proportion of high clouds in the total cloud in Inner Mongolia is relatively large, and the contribution rates of high clouds in the annual average total cloud quantity, cloud optical thickness and cloud effective ion radius reach 38.09%, 51.46% and 63.02%, respectively. At the annual scale, the total clouds are mainly distributed in the eastern and central regions of Inner Mongolia, and the cloud parameters decrease from northeast to southwest. High clouds are mainly distributed in the eastern, northern and central parts of Inner Mongolia. On the seasonal scale, the cloud cover, cloud optical thickness and cloud effective particle radius of total and high clouds reached the maximum values in summer, and the mean of total cloud cloud amount reached 63%, the mean of total cloud optical thickness reached 9.44, and the mean of total cloud effective ion radius reached 9.37 μm in summer. The cloudiness of summer total clouds and high clouds were mainly distributed

References

[1]  韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4): 505-516.
[2]  达布希拉图, 苏立娟, 邓晓东. 内蒙古地区云量时空分布及变化趋势分析[J]. 气象科技, 2009, 37(3): 306-310.
[3]  吴晓, 游然, 王旻燕, 谷军霞. 基于MODIS云宏微观特性的卫星云分类方法[J]. 应用气象学报, 2016, 27(2): 201-208.
[4]  Hartmann, D.L. and Doelling, D. (1991) On the Net Radiative Effectiveness of Clouds. Journal of Geophysical Research: Atmospheres, 96, 869-891.
https://doi.org/10.1029/90jd02065
[5]  Ding, S. (2004) Analyzing Global Trends of Different Cloud Types and Their Potential Impacts on Climate by Using the ISCCP D2 Dataset. Chinese Science Bulletin, 49, 1301-1306.
https://doi.org/10.1360/03wd0614
[6]  Zib, B.J., Dong, X., Xi, B. and Kennedy, A. (2012) Evaluation and Intercomparison of Cloud Fraction and Radiative Fluxes in Recent Reanalyses over the Arctic Using BSRN Surface Observations. Journal of Climate, 25, 2291-2305.
https://doi.org/10.1175/jcli-d-11-00147.1
[7]  刘洪利, 朱文琴, 宜树华, 等. 中国地区云的气候特征分析[J]. 气象学报, 2003, 61(4): 466-473.
[8]  王艺, 伯玥, 王澄海. 青藏高原中东部云量变化与气温的不对称升高[J]. 高原气象, 2016, 35(4): 908-919.
[9]  Zhou, X., Zhang, H., Jing, X., et al. (2016) Distribution and Variation Trends of Cloud Amount and Optical Thickness over China. Journal of Atmospheric & Environmental Optics, 11, 1-10.
[10]  朝鲁门, 宁小莉, 包玉海, 胡斯勒图, 秦福莹, 尚华哲. 基于葵花-8卫星的白天冰云识别初探[J]. 内蒙古农业大学学报(自然科学版), 2019, 40(2): 45-49.
[11]  肖武平. 日本首颗新一代气象卫星向日葵-8入轨[J]. 国际太空, 2015(434): 87-91.
[12]  闵敏, 王富. 日本新一代静止气象卫星葵花8号科学产品近实时处理系统[C]//中国气象学会. 第33届中国气象学会年会S21新一代气象卫星技术发展及其应用. 2016: 187-196.
[13]  Shang, H., Letu, H., Nakajima, T.Y., Wang, Z., Ma, R., Wang, T., et al. (2018) Diurnal Cycle and Seasonal Variation of Cloud Cover over the Tibetan Plateau as Determined from Himawari-8 New-Generation Geostationary Satellite Data. Scientific Reports, 8, Article No. 1105.
https://doi.org/10.1038/s41598-018-19431-w
[14]  今井崇, 吉田良. Himawari-8云掩模产品的算法理论基础[R]. 气象卫星中心技术报告, 2016.
[15]  Bao, S., Letu, H., Zhao, C., Tana, G., Shang, H., Wang, T., et al. (2019) Spatiotemporal Distributions of Cloud Parameters and the Temperature Response over the Mongolian Plateau during 2006-2015 Based on MODIS Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 549-558.
https://doi.org/10.1109/jstars.2018.2857827
[16]  王菱, 甄霖, 刘雪林, 等. 蒙古高原中部气候变化及影响因素比较研究[J]. 地理研究, 2008, 27(1): 171-180.
[17]  苗秋菊, 徐祥德, 施小英. 青藏高原周边异常多雨中心及其水汽输送通道[J]. 气象, 2004, 30(12): 44-46.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133