全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Exact Solutions for the Coupled Gross-Pitaevskii Equation

DOI: 10.4236/am.2025.164021, PP. 383-419

Keywords: The Coupled Gross-Pitaevskii Equations, The Modified Hyperbolic Function Expanding Method, The Traveling Wave Solutions, Partial Differential Equations

Full-Text   Cite this paper   Add to My Lib

Abstract:

The coupled Gross-Pitaevskii equations are the basic model describing the phenomenon of Bose-Einstein condensation. Therefore, the research on the coupled Gross-Pitaevskii equations is very important. One of the main tasks of studying the coupled Gross-Pitaevskii equations is to obtain the exact solutions. In this paper, the study of the exact solutions of the coupled Gross-Pitaevskii equations is mainly based by using the modified polynomial expansion method and the modified traveling wave solution transformation method, assisted by computer software. Firstly, the coupled Gross-Pitaevskii equations are changed into a nonlinear coupled ordinary differential system by a coupled traveling wave solution transformation. Secondly, by using the modified polynomial expansion method, we successfully obtain more new exact elliptic function solutions, hyperbolic function solutions, and trigonometric function solutions for the coupled Gross-Pitaevskii equations. Finally, according to the special parameter values, we show the figures for some of the exact solutions.

References

[1]  Wen, X., Yang, Y. and Yan, Z. (2015) Generalized Perturbation (n, M)-Fold Darboux Transformations and Multi-Rogue-Wave Structures for the Modified Self-Steepening Nonlinear Schrödinger Equation. Physical Review E, 92, Article 012917.
[2]  Wang, S. (2023) Novel Soliton Solutions of CNLSEs with Hirota Bilinear Method. Journal of Optics, 52, 1602-1607.
https://doi.org/10.1007/s12596-022-01065-x
[3]  Dai, C., Wang, Y. and Zhang, X. (2014) Controllable Akhmediev Breather and Kuznetsov-Ma Soliton Trains in ����-Symmetric Coupled Waveguides. Optics Express, 22, 29862-29867.
https://doi.org/10.1364/oe.22.029862
[4]  Xu, G. (2006) Painlevé Classification of a Generalized Coupled Hirota System. Physical Review E, 74, Article 027602.
https://doi.org/10.1103/physreve.74.027602
[5]  He, J., Guo, L., Zhang, Y. and Chabchoub, A. (2014) Theoretical and Experimental Evidence of Non-Symmetric Doubly Localized Rogue Waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470, Article 20140318.
https://doi.org/10.1098/rspa.2014.0318
[6]  Bhrawy, A.H., Abdelkawy, M.A. and Biswas, A. (2013) Cnoidal and Snoidal Wave Solutions to Coupled Nonlinear Wave Equations by the Extended Jacobi’s Elliptic Function Method. Communications in Nonlinear Science and Numerical Simulation, 18, 915-925.
https://doi.org/10.1016/j.cnsns.2012.08.034
[7]  Zhang, Y., Guo, L., He, J. and Zhou, Z. (2015) Darboux Transformation of the Second-Type Derivative Nonlinear Schrödinger Equation. Letters in Mathematical Physics, 105, 853-891.
https://doi.org/10.1007/s11005-015-0758-x
[8]  Abbagari, S., Houwe, A., Akinyemi, L., Saliou, Y. and Bouetou, T.B. (2022) Modulation Instability Gain and Discrete Soliton Interaction in Gyrotropic Molecular Chain. Chaos, Solitons & Fractals, 160, Article 112255.
https://doi.org/10.1016/j.chaos.2022.112255
[9]  Liu, X., Zhou, Q., Biswas, A., Alzahrani, A.K. and Liu, W. (2020) The Similarities and Differences of Different Plane Solitons Controlled by (3+1)—Dimensional Coupled Variable Coefficient System. Journal of Advanced Research, 24, 167-173.
https://doi.org/10.1016/j.jare.2020.04.003
[10]  Hammack, J.L., Henderson, D.M. and Segur, H. (2005) Progressive Waves with Persistent Two-Dimensional Surface Patterns in Deep Water. Journal of Fluid Mechanics, 532, 1-52.
[11]  Dalfovo, F., Giorgini, S., Pitaevskii, L.P. and Stringari, S. (1999) Theory of Bose-Einstein Condensation in Trapped Gases. Reviews of Modern Physics, 71, 463-512.
https://doi.org/10.1103/revmodphys.71.463
[12]  Ieda, J., Miyakawa, T. and Wadati, M. (2004) Matter-Wave Solitons in an F = 1 Spinor Bose-Einstein Condensate. Journal of the Physical Society of Japan, 73, 2996-3007.
https://doi.org/10.1143/jpsj.73.2996
[13]  Tasgal, R.S. and Potasek, M.J. (1992) Soliton Solutions to Coupled Higher-Order Nonlinear Schrödinger Equations. Journal of Mathematical Physics, 33, 1208-1215.
https://doi.org/10.1063/1.529732
[14]  Wang, D., Yin, S., Tian, Y. and Liu, Y. (2014) Integrability and Bright Soliton Solutions to the Coupled Nonlinear Schrödinger Equation with Higher-Order Effects. Applied Mathematics and Computation, 229, 296-309.
https://doi.org/10.1016/j.amc.2013.12.057
[15]  Ozisik, M., Secer, A. and Bayram, M. (2022) On the Examination of Optical Soliton Pulses of Manakov System with Auxiliary Equation Technique. Optik, 268, Article 169800.
https://doi.org/10.1016/j.ijleo.2022.169800
[16]  Camassa, R., Hyman, J.M. and Luce, B.P. (1998) Nonlinear Waves and Solitons in Physical Systems. Physica D: Nonlinear Phenomena, 123, 1-20.
https://doi.org/10.1016/s0167-2789(98)00108-0
[17]  Christodoulides, D.N., Lederer, F. and Silberberg, Y. (2003) Discretizing Light Behaviour in Linear and Nonlinear Waveguide Lattices. Nature, 424, 817-823.
https://doi.org/10.1038/nature01936
[18]  Younas, U., Sulaiman, T.A. and Ren, J. (2022) On the Study of Optical Soliton Solutions to the Three-Component Coupled Nonlinear Schrödinger Equation: Applications in Fiber Optics. Optical and Quantum Electronics, 55, Article No. 72.
https://doi.org/10.1007/s11082-022-04254-x
[19]  Stegeman, G.I., Wright, E.M., Finlayson, N., Zanoni, R. and Seaton, C.T. (1988) Third Order Nonlinear Integrated Optics. Journal of Lightwave Technology, 6, 953-970.
https://doi.org/10.1109/50.4087
[20]  Kagan, Y., Shlyapnikov, G.V. and Walraven, J.T.M. (1996) Bose-Einstein Condensation in Trapped Atomic Gases. Physical Review Letters, 76, 2670-2673.
https://doi.org/10.1103/physrevlett.76.2670
[21]  Livi, R., Franzosi, R. and Oppo, G. (2006) Self-Localization of Bose-Einstein Condensates in Optical Lattices via Boundary Dissipation. Physical Review Letters, 97, Article 060401.
https://doi.org/10.1103/physrevlett.97.060401
[22]  Ling, L. and Zhao, L. (2015) Integrable Pair-Transition-Coupled Nonlinear Schrödinger Equations. Physical Review E, 92, Article 022924.
https://doi.org/10.1103/physreve.92.022924
[23]  Kopidakis, G., Aubry, S. and Tsironis, G.P. (2001) Targeted Energy Transfer through Discrete Breathers in Nonlinear Systems. Physical Review Letters, 87, Article 165501.
https://doi.org/10.1103/physrevlett.87.165501
[24]  Sarkissian, J. (2020) Quantum Coupled-Wave Theory of Price Formation in Financial Markets: Price Measurement, Dynamics and Ergodicity. Physica A: Statistical Mechanics and its Applications, 554, Article 124300.
https://doi.org/10.1016/j.physa.2020.124300
[25]  Yan, Z. (2011) Vector Financial Rogue Waves. Physics Letters A, 375, 4274-4279.
https://doi.org/10.1016/j.physleta.2011.09.026
[26]  Liu, B., Zhang, X., Wang, B. and Lü, X. (2022) Rogue Waves Based on the Coupled Nonlinear Schrödinger Option Pricing Model with External Potential. Modern Physics Letters B, 36, Article 2250057.
https://doi.org/10.1142/s0217984922500579
[27]  Ankiewicz, A., Devine, N. and Akhmediev, N. (2009) Are Rogue Waves Robust against Perturbations? Physics Letters A, 373, 3997-4000.
https://doi.org/10.1016/j.physleta.2009.08.053
[28]  Hietarinta, J. (1997) Introduction to the Hirota Bilinear Method. In: Kosmann-Schwarzbach, Y., Grammaticos, B. and Tamizhmani, K.M., Eds., Lecture Notes in Physics, Springer, 95-103.
https://doi.org/10.1007/bfb0113694
[29]  Weiss, J. (1983) The Painlevé Property for Partial Differential Equations. II: Bäcklund Transformation, Lax Pairs, and the Schwarzian Derivative. Journal of Mathematical Physics, 24, 1405-1413.
https://doi.org/10.1063/1.525875
[30]  Clarkson, P.A. (1990) Painlevé Analysis and the Complete Integrability of a Generalized Variable-Coefficient Kadomtsev-Petviashvili Equation. IMA Journal of Applied Mathematics, 44, 27-53.
https://doi.org/10.1093/imamat/44.1.27
[31]  Wahlquist, H.D. and Estabrook, F.B. (1973) Bäcklund Transformation for Solutions of the Korteweg-De Vries Equation. Physical Review Letters, 31, 1386-1390.
https://doi.org/10.1103/physrevlett.31.1386
[32]  Li, B., Chen, Y. and Zhang, H. (2002) Auto-Bäcklund Transformation and Exact Solutions for Compound KDV-Type and Compound KDV-Burgers-Type Equations with Nonlinear Terms of Any Order. Physics Letters A, 305, 377-382.
https://doi.org/10.1016/s0375-9601(02)01515-3
[33]  Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J. and Asghari, R. (2018) Traveling Wave Solution of Conformable Fractional Generalized Reaction Duffing Model by Generalized Projective Riccati Equation Method. Optical and Quantum Electronics, 50, Article No. 150.
https://doi.org/10.1007/s11082-018-1416-1
[34]  Conte, R. and Musette, M. (1992) Link between Solitary Waves and Projective Riccati Equations. Journal of Physics A: Mathematical and General, 25, 5609-5623.
https://doi.org/10.1088/0305-4470/25/21/019
[35]  Abdel-Gawad, H.I. and Osman, M. (2014) Exact Solutions of the Korteweg-De Vries Equation with Space and Time Dependent Coefficients by the Extended Unified Method. Indian Journal of Pure and Applied Mathematics, 45, 1-12.
https://doi.org/10.1007/s13226-014-0047-x
[36]  Abdou, M.A. (2008) Generalized Solitonary and Periodic Solutions for Nonlinear Partial Differential Equations by the Exp-Function Method. Nonlinear Dynamics, 52, 1-9.
https://doi.org/10.1007/s11071-007-9250-1
[37]  Tian, B. and Gao, Y. (2001) Variable-Coefficient Balancing-Act Method and Variable-Coefficient KdV Equation from Fluid Dynamics and Plasma Physics. The European Physical Journal B, 22, 351-360.
https://doi.org/10.1007/bf01312805
[38]  Wang, M., Li, X. and Zhang, J. (2008) The ()-Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics. Physics Letters A, 372, 417-423.
https://doi.org/10.1016/j.physleta.2007.07.051
[39]  Zhang, S., Tong, J. and Wang, W. (2008) A Generalized ()-Expansion Method for the mKdV Equation with Variable Coefficients. Physics Letters A, 372, 2254-2257.
https://doi.org/10.1016/j.physleta.2007.11.026
[40]  Bekir, A. (2008) Application of the ()-Expansion Method for Nonlinear Evolution Equations. Physics Letters A, 372, 3400-3406.
https://doi.org/10.1016/j.physleta.2008.01.057
[41]  Malfliet, W. and Hereman, W. (1996) The Tanh Method: I. Exact Solutions of Nonlinear Evolution and Wave Equations. Physica Scripta, 54, 563-568.
https://doi.org/10.1088/0031-8949/54/6/003
[42]  Abdou, M.A. and Soliman, A.A. (2006) Modified Extended Tanh-Function Method and Its Application on Nonlinear Physical Equations. Physics Letters A, 353, 487-492.
https://doi.org/10.1016/j.physleta.2006.01.013
[43]  Samir, I., Ahmed, H.M., Mirzazadeh, M. and Triki, H. (2023) Derivation New Solitons and Other Solutions for Higher Order Sasa-Satsuma Equation by Using the Improved Modified Extended Tanh Scheme. Optik, 274, Article 170592.
https://doi.org/10.1016/j.ijleo.2023.170592
[44]  Fu, Z., Liu, S., Liu, S. and Zhao, Q. (2001) New Jacobi Elliptic Function Expansion and New Periodic Solutions of Nonlinear Wave Equations. Physics Letters A, 290, 72-76.
https://doi.org/10.1016/s0375-9601(01)00644-2
[45]  Haider, J.A., Asghar, S. and Nadeem, S. (2022) Travelling Wave Solutions of the Third-Order KdV Equation Using Jacobi Elliptic Function Method. International Journal of Modern Physics B, 37, Article 2350117.
https://doi.org/10.1142/s0217979223501175
[46]  Wang, M. and Li, X. (2005) Extended F-Expansion Method and Periodic Wave Solutions for the Generalized Zakharov Equations. Physics Letters A, 343, 48-54.
https://doi.org/10.1016/j.physleta.2005.05.085
[47]  Borg, M., Badra, N.M., Ahmed, H.M. and Rabie, W.B. (2024) Solitons Behavior of Sasa-Satsuma Equation in Birefringent Fibers with Kerr Law Nonlinearity Using Extended F-Expansion Method. Ain Shams Engineering Journal, 15, Article 102290.
https://doi.org/10.1016/j.asej.2023.102290
[48]  Sirendaoreji, and Jiong, S. (2003) Auxiliary Equation Method for Solving Nonlinear Partial Differential Equations. Physics Letters A, 309, 387-396.
https://doi.org/10.1016/s0375-9601(03)00196-8
[49]  Feng, Z. (2002) The First-Integral Method to Study the Burgers-Korteweg-de Vries Equation. Journal of Physics A: Mathematical and General, 35, 343-349.
https://doi.org/10.1088/0305-4470/35/2/312
[50]  Behera, S. (2023) Analysis of Traveling Wave Solutions of Two Space-Time Nonlinear Fractional Differential Equations by the First-Integral Method. Modern Physics Letters B, 38, Article 2350247.
https://doi.org/10.1142/s0217984923502470
[51]  Chaachoua Sameut, H., Pattu, S., Al Khawaja, U., Benarous, M. and Belkroukra, H. (2020) Peregrine Soliton Management of Breathers in Two Coupled Gross-Pitaevskii Equations with External Potential. Physics of Wave Phenomena, 28, 305-312.
https://doi.org/10.3103/s1541308x20030036
[52]  Fei, J. and Zheng, C. (2012) Exact Solutions and Localized Excitations of a (3 + 1)-Dimensional Gross—Pitaevskii System. Chinese Physics B, 21, Article 070304.
https://doi.org/10.1088/1674-1056/21/7/070304
[53]  Xu, T. and Chen, Y. (2018) Darboux Transformation of the Coupled Nonisospectral Gross-Pitaevskii System and Its Multi-Component Generalization. Communications in Nonlinear Science and Numerical Simulation, 57, 276-289.
https://doi.org/10.1016/j.cnsns.2017.09.009
[54]  Kanna, T., Annamalar Sheela, A. and Babu Mareeswaran, R. (2019) Spatially Modulated Two-and Three-Component Rabi-Coupled Gross-Pitaevskii Systems. Journal of Physics A: Mathematical and Theoretical, 52, Article 375201.
https://doi.org/10.1088/1751-8121/ab330d
[55]  Wang, D., Hu, X. and Liu, W.M. (2010) Localized Nonlinear Matter Waves in Two-Component Bose-Einstein Condensates with Time-and Space-Modulated Nonlinearities. Physical Review A, 82, Article 023612.
https://doi.org/10.1103/physreva.82.023612
[56]  Abdullaev, F.K., Yuldashev, J.S. and Ögren, M. (2023) Nonlinearity Managed Vector Solitons. Physics Letters A, 491, Article 129206.
https://doi.org/10.1016/j.physleta.2023.129206
[57]  Zhang, L. (2009) Travelling Wave Solutions for the Generalized Zakharov-Kuznetsov Equation with Higher-Order Nonlinear Terms. Applied Mathematics and Computation, 208, 144-155.
https://doi.org/10.1016/j.amc.2008.11.020
[58]  Byrd, P.F. and Friedman, M.D. (1971) Handbook of Elliptic Integrals for Engineers and Scientists. Springer Nature.
https://doi.org/10.1007/978-3-642-65138-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133