The study aims to develop a semi-automatic leukocyte tracking (SALT) method to efficiently quantify in vivo leukocyte rolling and adhesion, overcoming the time-consuming limitations of manual frame-by-frame analysis of time-lapse images. This computational approach enables the rapid processing of large data sets, facilitating the study of leukocyte rolling and adhesion, initial and important events for leukocyte recruitment during tissue inflammation. Leukocytes were detected and tracked using the customized SALT module in ImageJ/Fiji, following specified criteria. Leukocyte flux, rolling, and adhesion were quantified from the tracks using a conditional decision algorithm. To validate the SALT method, the same images were analyzed in parallel by independent analyzers using both the SALT method and the classical manual tracking technique for comparison. The novel SALT method demonstrated high inter-rater and intra-rater reliability for rolling velocity, with no significant differences observed. Strong correlations were found between SALT and manual measurements for leukocyte displacement and velocity (r = 0.96, r = 0.97; p < 0.001), total and rolling flux (r = 0.81, r = 0.89; p < 0.05), and adherent cells (r = 0.97, p < 0.001). The SALT technique will be implemented to eliminate subjective bias and enhance high-throughput in vivo leukocyte rolling and adhesion analysis using ImageJ/Fiji in future studies.
References
[1]
Pettersson, U.S., Christoffersson, G., Massena, S., Ahl, D., Jansson, L., Henriksnäs, J., et al. (2011) Increased Recruitment but Impaired Function of Leukocytes during Inflammation in Mouse Models of Type 1 and Type 2 Diabetes. PLOSONE, 6, e22480. https://doi.org/10.1371/journal.pone.0022480
[2]
Yayan, J. (2013) Emerging Families of Biomarkers for Coronary Artery Disease: Inflammatory Mediators. VascularHealthandRiskManagement, 9, 435-456. https://doi.org/10.2147/vhrm.s45704
[3]
Vitiello, L., Spoletini, I., Gorini, S., Pontecorvo, L., Ferrari, D., Ferraro, E., et al. (2014) Microvascular Inflammation in Atherosclerosis. IJCMetabolic&Endocrine, 3, 1-7. https://doi.org/10.1016/j.ijcme.2014.03.002
[4]
Haq, S., Grondin, J., Banskota, S. and Khan, W.I. (2019) Autophagy: Roles in Intestinal Mucosal Homeostasis and Inflammation. JournalofBiomedicalScience, 26, Article No. 19. https://doi.org/10.1186/s12929-019-0512-2
[5]
Arendshorst, W.J., Bell, P.D., Bhattacharya, J., Bohlen, H.G., Breslin, J.W., Carey, R.M. et al. (2008) Handbook of Physiology: Microrcirculation. American Physiological Society.
[6]
Granger, D.N. and Kubes, P. (1994) The Microcirculation and Inflammation: Modulation of Leukocyte-Endothelial Cell Adhesion. JournalofLeukocyteBiology, 55, 662-675. https://doi.org/10.1002/jlb.55.5.662
[7]
Bienvenu, K. and Granger, D.N. (1993) Molecular Determinants of Shear Rate-Dependent Leukocyte Adhesion in Postcapillary Venules. AmericanJournalofPhysiology-HeartandCirculatoryPhysiology, 264, H1504-H1508. https://doi.org/10.1152/ajpheart.1993.264.5.h1504
[8]
Chapman, G.B. and Cokelet, G.R. (1997) Model Studies of Leukocyte-Endothelium-Blood Interactions. Biorheology, 34, 37-56. https://doi.org/10.3233/bir-1997-34103
[9]
Langer, H.F. and Chavakis, T. (2009) Leukocyte—Endothelial Interactions in Inflammation. JournalofCellularandMolecularMedicine, 13, 1211-1220. https://doi.org/10.1111/j.1582-4934.2009.00811.x
[10]
da Silva, B.C.G., Ferrari, R.J. and Tavares, J.C. (2015) Detection of Leukocytes in Intravital Video Microscopy Based on the Analysis of Hessian Matrix Eigenvalues. 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, Salvador, 26-29 August 2015, 345-352. https://doi.org/10.1109/sibgrapi.2015.48
[11]
Grădinaru, C., Łopacińska, J.M., Huth, J., Kestler, H.A., Flyvbjerg, H. and Mølhave, K. (2012) Assessment of Automated Analyses of Cell Migration on Flat and Nanostructured Surfaces. ComputationalandStructuralBiotechnologyJournal, 1, e201207004. https://doi.org/10.5936/csbj.201207004
[12]
Xu, N., Lei, X. and Liu, L. (2011) Tracking Neutrophil Intraluminal Crawling, Transendothelial Migration and Chemotaxis in Tissue by Intravital Video Microscopy. JournalofVisualizedExperiments, 55, e3296. https://doi.org/10.3791/3296
[13]
Sperandio, M., Pickard, J., Unnikrishnan, S., Acton, S.T. and Ley, K. (2006) Analysis of Leukocyte Rolling in Vivo and in Vitro. MethodsinEnzymology, 416, 346-371. https://doi.org/10.1016/s0076-6879(06)16023-1
[14]
Ray, N., Acton, S.T. and Ley, K. (2002) Tracking Leukocytes in Vivo with Shape and Size Constrained Active Contours. IEEETransactionsonMedicalImaging, 21, 1222-1235. https://doi.org/10.1109/tmi.2002.806291
[15]
Lagrange, J., Kossmann, S., Kiouptsi, K. and Wenzel, P. (2018) Visualizing Leukocyte Rolling and Adhesion in Angiotensin II-Infused Mice: Techniques and Pitfalls. JournalofVisualizedExperiments, 131, e56948. https://doi.org/10.3791/56948
[16]
Klyscz, T., Jünger, M., Jung, F. and Zeintl, H. (1997) Cap Image—Ein Neuartiges Computerunterstütztes Videobildanalysesystem Für Die Dynamische Kapillarmikroskopie—Cap Image—A Newly-Developed Computer-Aided Videoframe Analysis System for Dynamic Capillaroscopy. BiomedizinischeTechnik/BiomedicalEngineering, 42, 168-175. https://doi.org/10.1515/bmte.1997.42.6.168
[17]
Dunne, J.L., Goobic, A.P., Acton, S.T. and Ley, K. (2004) A Novel Method to Analyze Leukocyte Rolling Behavior in Vivo. BiologicalProceduresOnline, 6, 173-179. https://doi.org/10.1251/bpo87
[18]
Anders, X., Zhang, C. and Yuan, H. (2006). Automatic Intravital Video Mining of Rolling and Adhering Leukocytes. 2006 5th International Conference on Machine Learning and Applications (ICMLA’06), Orlando, 14-16 December 2006, 174-179. https://doi.org/10.1109/icmla.2006.18
[19]
Zhang, C., Chen, W., Yang, L. and Chen, X. (2007) Detection of Leukocytes from in Vivo Videos. The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), Jeju, 11-13 October 2007, 68-71. https://doi.org/10.1109/ipc.2007.19
[20]
Sacan, A., Ferhatosmanoglu, H. and Coskun, H. (2008) CellTrack: An Open-Source Software for Cell Tracking and Motility Analysis. Bioinformatics, 24, 1647-1649. https://doi.org/10.1093/bioinformatics/btn247
[21]
Huang, T., Lin, W., Wu, C., Zhang, G. and Lin, K. (2010) Experimental Estimation of Blood Flow Velocity through Simulation of Intravital Microscopic Imaging in Micro-Vessels by Different Image Processing Methods. MicrovascularResearch, 80, 477-483. https://doi.org/10.1016/j.mvr.2010.07.007
[22]
Klein, J., Leupold, S., Biegler, I., Biedendieck, R., Münch, R. and Jahn, D. (2012) TLM-Tracker: Software for Cell Segmentation, Tracking and Lineage Analysis in Time-Lapse Microscopy Movies. Bioinformatics, 28, 2276-2277. https://doi.org/10.1093/bioinformatics/bts424
[23]
Chalfoun, J., Majurski, M., Dima, A., Halter, M., Bhadriraju, K. and Brady, M. (2016) Lineage Mapper: A Versatile Cell and Particle Tracker. ScientificReports, 6, Article No. 36984. https://doi.org/10.1038/srep36984
[24]
Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S.L., et al. (2008) Robust Single-Particle Tracking in Live-Cell Time-Lapse Sequences. NatureMethods, 5, 695-702. https://doi.org/10.1038/nmeth.1237
[25]
Kan, A., Chakravorty, R., Bailey, J., Leckie, C., Markham, J. and Dowling, M.R. (2011) Automated and Semi-Automated Cell Tracking: Addressing Portability Challenges. JournalofMicroscopy, 244, 194-213. https://doi.org/10.1111/j.1365-2818.2011.03529.x
[26]
Chen, Y., Zhao, Z., Liu, L. and Li, H. (2011) Automatic Tracking and Measurement of the Motion of Blood Cells in Microvessels Based on Analysis of Multiple Spatiotemporal Images. MeasurementScienceandTechnology, 22, Article ID: 045803. https://doi.org/10.1088/0957-0233/22/4/045803
[27]
Baez, S. (1973) An Open Cremaster Muscle Preparation for the Study of Blood Vessels by in Vivo Microscopy. MicrovascularResearch, 5, 384-394. https://doi.org/10.1016/0026-2862(73)90054-x
[28]
Damiano, E.R., Westheider, J., Tözeren, A. and Ley, K. (1996) Variation in the Velocity, Deformation, and Adhesion Energy Density of Leukocytes Rolling within Venules. CirculationResearch, 79, 1122-1130. https://doi.org/10.1161/01.res.79.6.1122
[29]
Norman, K., Moore, K., McEver, R. and Ley, K. (1995) Leukocyte Rolling in Vivo Is Mediated by P-Selectin Glycoprotein Ligand-1. Blood, 86, 4417-4421. https://doi.org/10.1182/blood.v86.12.4417.bloodjournal86124417
[30]
Granger, D.N. and Senchenkova, E. (2010) Inflammation and the Microcirculation. ColloquiumSeriesonIntegratedSystemsPhysiology: FromMoleculetoFunction, 2, 1-87. https://doi.org/10.4199/c00013ed1v01y201006isp008
[31]
Gavins, F.N.E. and Chatterjee, B.E. (2004) Intravital Microscopy for the Study of Mouse Microcirculation in Anti-Inflammatory Drug Research: Focus on the Mesentery and Cremaster Preparations. JournalofPharmacologicalandToxicologicalMethods, 49, 1-14. https://doi.org/10.1016/s1056-8719(03)00057-1
[32]
D. Edelstein, A., A. Tsuchida, M., Amodaj, N., Pinkard, H., D. Vale, R. and Stuurman, N. (2014) Advanced Methods of Microscope Control Using Μmanager Software. JournalofBiologicalMethods, 1, Article 1. https://doi.org/10.14440/jbm.2014.36
[33]
Goobic, A.P., Tang, J. and Acton, S.T. (2005) Image Stabilization and Registration for Tracking Cells in the Microvasculature. IEEETransactionsonBiomedicalEngineering, 52, 287-299. https://doi.org/10.1109/tbme.2004.840468
[34]
Guo, D.M., van de Ven, A.L. and Xiaobo Zhou, (2014) Red Blood Cell Tracking Using Optical Flow Methods. IEEEJournalofBiomedicalandHealthInformatics, 18, 991-998. https://doi.org/10.1109/jbhi.2013.2281915
[35]
Gonzalez, R. and Woods, R. (2008) Digital Image Processing. 3rd Edition, Prentice Hall.
[36]
Grimes, W. (2016) Image Processing and Analysis Methods in Quantitative Endothelial Cell Biology. Master’s Thesis, University College London.
[37]
Sahoo, P., Wilkins, C. and Yeager, J. (1997) Threshold Selection Using Renyi’s Entropy. PatternRecognition, 30, 71-84. https://doi.org/10.1016/s0031-3203(96)00065-9
[38]
Tinevez, J., Perry, N., Schindelin, J., Hoopes, G.M., Reynolds, G.D., Laplantine, E., et al. (2017) Trackmate: An Open and Extensible Platform for Single-Particle Tracking. Methods, 115, 80-90. https://doi.org/10.1016/j.ymeth.2016.09.016
[39]
Adrian, R.J. and Westerweel, J. (2011) Particle Image Velocimetry. Springer. https://doi.org/10.1007/978-3-540-72308-0
[40]
Pittman, R.N. and Ellsworth, M.L. (1986) Estimation of Red Cell Flow in Microvessels: Consequences of the Baker-Wayland Spatial Averaging Model. MicrovascularResearch, 32, 371-388. https://doi.org/10.1016/0026-2862(86)90072-5
[41]
Tang, J., Ley, K.F. and Hunt, C.A. (2007) Dynamics of in Silico Leukocyte Rolling, Activation, and Adhesion. BMCSystemsBiology, 1, Article No. 14. https://doi.org/10.1186/1752-0509-1-14
[42]
Jain, R.K., Munn, L.L. and Fukumura, D. (2013) Measuring Leukocyte-Endothelial Interactions in Mice. ColdSpringHarborProtocols, No. 6, 561-563. https://doi.org/10.1101/pdb.prot075085
[43]
Gregório, B.C., Silva, D., Ferrari, R.J. and Carvalho-Tavares, J. (2011) Automated Technique for in Vivo Analysis of Leukocyte Recruitment of Mice Brain Microcirculation. John Wiley & Sons, Inc.
[44]
Firrell, J.C. and Lipowsky, H.H. (1989) Leukocyte Margination and Deformation in Mesenteric Venules of Rat. AmericanJournalofPhysiology-HeartandCirculatoryPhysiology, 256, H1667-H1674. https://doi.org/10.1152/ajpheart.1989.256.6.h1667
[45]
Ley, K. and Gaehtgens, P. (1991) Endothelial, Not Hemodynamic, Differences Are Responsible for Preferential Leukocyte Rolling in Rat Mesenteric Venules. CirculationResearch, 69, 1034-1041. https://doi.org/10.1161/01.res.69.4.1034
[46]
Lipowsky, H.H., Kovalcheck, S. and Zweifach, B.W. (1978) The Distribution of Blood Rheological Parameters in the Microvasculature of Cat Mesentery. CirculationResearch, 43, 738-749. https://doi.org/10.1161/01.res.43.5.738
[47]
Eden, E., Waisman, D., Rudzsky, M., Bitterman, H., Brod, V. and Rivlin, E. (2005) An Automated Method for Analysis of Flow Characteristics of Circulating Particles from in Vivo Video Microscopy. IEEETransactionsonMedicalImaging, 24, 1011-1024. https://doi.org/10.1109/tmi.2005.851759
[48]
Ghosh, M., Das, D.K., Ray, A.K. and Chakraborty, C. (2011) Development of Renyi’s Entropy Based Fuzzy Divergence Measure for Leukocyte Segmentation. JournalofMedicalImagingandHealthInformatics, 1, 334-340. https://doi.org/10.1166/jmihi.2011.1052
[49]
Wu, C., Zhang, G., Huang, T. and Lin, K. (2009) Red Blood Cell Velocity Measurements of Complete Capillary in Finger Nail-Fold Using Optical Flow Estimation. MicrovascularResearch, 78, 319-324. https://doi.org/10.1016/j.mvr.2009.07.002
[50]
Arora, A. and Qazi, T. (2014) Computer Vision Based Tracking of Biological Cells—A Review. InternationalConferenceofAdvanceResearchandInnovation, Seville, 17-19 November 2014, 118-126.
[51]
Barron, J.L., Fleet, D.J. and Beauchemin, S.S. (1994) Performance of Optical Flow Techniques. InternationalJournalofComputerVision, 12, 43-77. https://doi.org/10.1007/bf01420984
[52]
Sato, Y., Chen, J., Zoroofi, R.A., Harada, N., Tamura, S. and Shiga, T. (1997) Automatic Extraction and Measurement of Leukocyte Motion in Microvessels Using Spatiotemporal Image Analysis. IEEETransactionsonBiomedicalEngineering, 44, 225-236. https://doi.org/10.1109/10.563292
[53]
Stuurman, N. and Swedlow, J.R. (2011) Software Tools, Data Structures, and Interfaces for Microscope Imaging. ColdSpringHarborProtocols, No. 1, 50-61. https://doi.org/10.1101/pdb.top067504
[54]
Maška, M., Ulman, V., Svoboda, D., Matula, P., Matula, P., Ederra, C., et al. (2014) A Benchmark for Comparison of Cell Tracking Algorithms. Bioinformatics, 30, 1609-1617. https://doi.org/10.1093/bioinformatics/btu080
[55]
Meijering, E., Dzyubachyk, O. and Smal, I. (2012) Methods for Cell and Particle Tracking. MethodsinEnzymology, 504, 183-200. https://doi.org/10.1016/b978-0-12-391857-4.00009-4
[56]
Kan, A., Chakravorty, R., Bailey, J., Leckie, C., Markham, J. and Dowling, M.R. (2011) Automated and Semi-Automated Cell Tracking: Addressing Portability Challenges. JournalofMicroscopy, 244, 194-213. https://doi.org/10.1111/j.1365-2818.2011.03529.x
[57]
Chenouard, N., Smal, I., de Chaumont, F., Maška, M., Sbalzarini, I.F., Gong, Y., et al. (2014) Objective Comparison of Particle Tracking Methods. NatureMethods, 11, 281-289. https://doi.org/10.1038/nmeth.2808
[58]
Acton, S.T., Wethmar, K. and Ley, K. (2002) Automatic Tracking of Rolling Leukocytes in Vivo. MicrovascularResearch, 63, 139-148. https://doi.org/10.1006/mvre.2001.2373
[59]
Cui, J., Acton, S.T. and Lin, Z. (2006) A Monte Carlo Approach to Rolling Leukocyte Tracking in Vivo. MedicalImageAnalysis, 10, 598-610. https://doi.org/10.1016/j.media.2006.05.006
[60]
Chatzizisis, Y.S., Coskun, A.U., Jonas, M., Edelman, E.R., Feldman, C.L. and Stone, P.H. (2007) Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling. JournaloftheAmericanCollegeofCardiology, 49, 2379-2393. https://doi.org/10.1016/j.jacc.2007.02.059
[61]
House, S.D. and Lipowsky, H.H. (1988) In Vivo Determination of the Force of Leukocyte-Endothelium Adhesion in the Mesenteric Microvasculature of the Cat. CirculationResearch, 63, 658-668. https://doi.org/10.1161/01.res.63.3.658
[62]
Smith, M.L., Smith, M.J., Lawrence, M.B. and Ley, K. (2002) Viscosity-independent Velocity of Neutrophils Rolling on P-Selectin in Vitro or in Vivo. Microcirculation, 9, 523-536. https://doi.org/10.1038/sj.mn.7800165