The aim of this paper was to describe the behavior of swell and its effects immediately offshore and along the coast of Pointe-Noire in the Republic of Congo, using the CMS-Wave model. This is a spectral wave forecasting model based on the wave action equilibrium equation and represents the two-dimensional variation of wave energy. The aim of this study was to understand the directional spectrum of wave energy and its impact on the dynamics of the coastal system in this area. The various test cases showed that the frontal incidence swell has similar effects to the non-frontal incidence swell in the northwest direction, with a slight amplification of wave height as it approaches the coast. For non-frontal swell in the south-westerly direction, wave heights are amplified as they approach the coast. This is because the coastal zone of Pointe-Noire does not receive wave energy in the counter-clockwise direction between 80? and 275?. The swell responsible for the greatest drift observed in this zone is coming from the southwest. As they pass through the immediate coastal zone of Pointe-Noire, waves tend to move northwards. A comparison of wave heights was made between the values obtained by the model and those predicted by marine weather spots on June 23rd and 24th, 2024, for validation purposes. The results obtained show that the model simulates waves reasonably well.
References
[1]
INRO (2014) Dossier d’appel d’offres pour les travaux de dragage pour l’accès nautique au port. Technical Report, Port Autonome de Pointe-Noire.
[2]
Diatta, L.S., Fall, L. and Sane, Y. (2022) Impacts de la dynamique du littoral entre cabrousse et boudiette (commune de diembering), basse casamance. Revue Espace Géographique et Société Marocaine, No. 58, 173-198.
[3]
Ndzessou, W., Tathy, C. and Etou, D. (2023) Contribution to the Modeling of Wave Propagation in the Coastal and Harbor Area of Pointe-Noire. American Journal of Engineering Research, 12, 77-85.
[4]
Ibouanga, B., Mounganga, M.D. and Tchoba, C. (2024) Villes littorales gabonaises, changements climatiques et enjeux de développement: État des lieux et réflexions stratégiques. Collection Pluraxes/Monde.
[5]
Desmare, S. and Nicolle, A. (2012) Hydrodynamique côtière: Modélisation des courants de marée au SHOM. XIIèmesJournéesNationales Génie Côtier—Génie Civil, Cherbourg, 12-14 Juin 2012, 31-40. https://doi.org/10.5150/jngcgc.2012.004-d
[6]
Zhang, B., Debaillon, P. and Sergent, P. (2010) Modélisation numérique du couplage houle-courants pour l’agitation de houle. Comparaison avec des essais en cuve à houle. XIèmesJournéesNationales Génie Côtier—Génie Civil, Les Sables d’Olonne, 22-25 Juin 2010, 147-154. https://doi.org/10.5150/jngcgc.2010.018-z
[7]
Rice, S., Buonaiuto, F., Yang, D., Falt, D., Hampson, R. and Kashlan, L. (2019) Application of CMS Model for Groin Field Layout Design at Rockaway Beach, New York. Coastal Sediments 2019, Petersburg, 27-31 May 2019, 1720-1732. https://doi.org/10.1142/9789811204487_0148
[8]
Mihoubi, M.K., Dahmani, H., Kettab, A. and Khodjet Kesba, O. (2011) Modélisation numérique de la houle côtière et du transport sédimentaire pour l’étude d’un port de pêche: Cas du port de Khemisti. ConférenceMéditerranéenneCôtière et Maritime, Tanger, 22-24 Novembre 2011, 225-228. https://doi.org/10.5150/cmcm.2011.048
[9]
Jestin, C., Grunnet, N., Kristensen, S.E. and Forain, N. (2016) Modélisation morphodynamique à long terme pour la gestion sédimentaire du littoral portuaire dunkerquois. XIVèmesJournéesNationales Génie Côtier—Génie Civ, Toulon, 29 Juin au 1er Juillet 2016, 221-218. https://doi.org/10.5150/jngcgc.2016.024
[10]
Lin, L., Li, H., Wu, F. and Andes, L. (2012) Littoral Transport Modeling for Ocean Beach and San Francisco Bight, California. Coastal Engineering Proceedings, 1, Article 59. https://doi.org/10.9753/icce.v33.sediment.59
[11]
Oukadr, M., Mouhid, M. and Chagdali, M. (2017) Modélisation hydrodynamique dans un port. 13e congrès de mécanique, Meknès, 11-14 April 2017.
[12]
Lin, L. and Demirbilek, Z. (2018) Coastal Wave Modeling for Jetty Rehabilitation at Coos Bay, Oregon. Coastal Engineering Proceedings, 1, Article 89. https://doi.org/10.9753/icce.v36.papers.89
[13]
Lin, L., Demirbilek, Z. and Shih, T. (2020) Matagorda Ship Channel and Its Entrance’s Navigation Efficiency and Safety Improvement via ADCIRC and CMS Model Simulation. Coastal Engineering Proceedings, 36, Article 56. https://doi.org/10.9753/icce.v36v.papers.56
[14]
Leroux, M. (1975) Climatologie dynamique de l’afrique. Travaux et Documents de GéographieTropicale, No. 19, 87-112.
[15]
Samba, G. and Mpounza, M. (2005) Application du processus de Markov sur les occurrences des précipitations journalières au Congo-Brazzaville. ComptesRendusGéoscience, 337, 1355-1364. https://doi.org/10.1016/j.crte.2005.07.010
[16]
Moukandi, N.G. (2012) Etude hydrogéologique, hydrochimique in-situ et mo-délisation hydrodynamique du système aquifère du bassin sédimentaire côtier de la région de Pointe-Noire. PhD thesis, Université Marien N’Gouabi (Congo).
[17]
Mase, H. (2001) Multi-Directional Random Wave Transformation Model Based on Energy Balance Equation. Coastal Engineering Journal, 43, 317-337. https://doi.org/10.1142/s0578563401000396
[18]
Sanchez, A., Wu, W., Li, H., Brown, M.E., Reed, C.W., Rosati, J.D., Demirbilek, Z., et al. (2014) Coastal Modeling System: Mathematical Formulations and Numerical Methods. US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory.
[19]
Miche, M. (1951) Le pouvoir réfléchissant des ouvrages maritimes exposés à l’action de la houle. Annales de Ponts et Chaussées, 121, 285-319.