全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

DBSCAN算法在优化农业灌区划分中的应用研究
The Application Research of DBSCAN Algorithm in Optimizing the Division of Agricultural Irrigation Areas

DOI: 10.12677/gst.2025.132014, PP. 109-128

Keywords: 农业灌区,聚类分析,DBSCAN算法,SC-DB-V-Measure
Agricultural Irrigation Areas
, Cluster Analysis, DBSCAN Algorithm, SC-DB-V-Measure

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着农业现代化进程的不断推进,农业灌区划分的优化工作显得尤为重要。本研究运用一种基于密度分类的DBSCAN算法作为农业灌区划分的新方法,该方法结合当地灌溉井、水系、耕地土壤类型、土地利用现状等影响因素,并基于Visual Studio 2019软件与C#编程语言,编写DBSCAN算法代码及聚类评估代码,以灌溉井坐标信息为例进行聚类分析,得出当地农业灌区的划分结果。结果表明:① 对比传统划分方法需要考虑的八大方面,本研究采用的基于DBSCAN算法的灌区划分方法可以在保证准确率(92.86%)的前提下,仅考虑四个方面,即通过更少的工作量完成灌区划分的前期准备工作。② 基于C#语言的DBSCAN算法架构及聚类评估体系,可以有效反映不同要素对灌区划分结果的影响,即可以通过改变坐标点的含义达到侧重性划分的目的。③ 算法中的参数Eps和MinPts可以代表目标点的半径及密度限制,这为以后的新建、续建和维护灌区提供了广泛的适用性。研究成果对新增灌区建设及续建工程的规划有一定借鉴意义。
As the process of agricultural modernization continues to advance, the optimization of agricultural irrigation area division has become particularly important. This study employs a density-based clustering algorithm known as DBSCAN as a new method for dividing agricultural irrigation areas. The method integrates local factors such as irrigation wells, water systems, soil types of cultivated land, and current land use status, and is based on the Visual Studio 2019 software and the C# programming language to write DBSCAN algorithm code and clustering evaluation code. Taking the coordinates of irrigation wells as an example, cluster analysis is conducted to obtain the division results of local agricultural irrigation areas. The results show: ① Compared to the eight aspects that need to be considered in traditional division methods, the DBSCAN algorithm-based irrigation area division method used in this study can, while ensuring accuracy (92.86%), only consider four minor aspects, that is, to complete the preliminary preparation work of irrigation area division with less workload. ② The DBSCAN algorithm architecture and clustering evaluation system based on the C# language can effectively reflect the impact of different factors on the division results of irrigation areas, that is, it is possible to achieve a focused division by changing the meaning of coordinate points. ③ The parameters Eps and MinPts in the algorithm can represent the radius and density limit of the target point, which provides broad applicability for the future construction, continuation, and maintenance of irrigation areas. The research findings have certain reference significance for the planning of new irrigation area construction and continuation projects.

References

[1]  张运凤, 郭威, 徐建新, 等. 基于最严格水资源管理制度的大功引黄灌区的水资源优化配置[J]. 华北水利水电大学学报(自然科学版), 2015, 36(3): 28-32.
[2]  高占义. 我国灌区建设及管理技术发展成就与展望[J]. 水利学报, 2019, 50(1): 88-96.
[3]  倪文进. 大中型灌区现代化建设需处理好几个问题[J]. 中国水利, 2020(9): 6-7.
[4]  中华人民共和国农业农村部. 关于扩大当前农业农村基础设施建设投资的工作的方案[EB/OL].
https://www.gov.cn/xinwen/2022-10/11/content_5717368.htm, 2022-10-11.
[5]  鄂竟平. 坚定不移践行水利改革发展总基调加快推进水利治理体系和治理能力现代化——在2020年全国水利工作会议上的讲话[J]. 中国水利, 2020(2): 1-15.
[6]  张金慧, 王志强, 陈振. 补短板强监管促发展见实效奋力推进农村水利水电高质量发展——访水利部农村水利水电司司长陈明忠[J]. 中国水利, 2019(24): 23-24.
[7]  何雨田, 白美健, 张宝忠, 等. 灌区智慧化发展现状与问题分析[J]. 节水灌溉, 2023(4): 115-121.
[8]  曹冰雪, 李瑾, 冯献, 等. 我国智慧农业的发展现状、路径与对策建议[J]. 农业现代化研究, 2021, 42(5): 785-794.
[9]  孙林, 刘梦含, 徐久成. 基于优化初始聚类中心和轮廓系数的K-Means聚类算法[J]. 模糊系统与数学, 2022, 36(1): 47-65.
[10]  王子龙, 李进, 宋亚飞. 基于距离和权重改进的K-Means算法[J]. 计算机工程与应用, 2020, 56(23): 87-94.
[11]  彭波, 史春雷, 高万林. DBSCAN算法优化及在村镇管理决策中的应用[J]. 农业机械学报, 2016, 47(10): 346-350.
[12]  徐雪婷, 孙浩捷, 宋长赢, 等. 伊犁河谷住宿业空间分布特征及影响因素研究[J]. 地域研究与开发, 2024, 43(2): 105-111.
[13]  范习超, 秦京涛, 徐磊, 等. 大型灌区节水水平评价指标体系构建与实证[J]. 农业工程学报, 2021, 37(20): 99-107.
[14]  杨振峰, 田军仓, 冯克鹏, 等. 基于多源数据的宁夏贺兰县现代化生态灌区健康评价[J]. 农业工程学报, 2021, 37(24): 307-316.
[15]  史良胜, 查元源, 胡小龙, 等. 智慧灌区的架构、理论和方法之初探[J]. 水利学报, 2020, 51(10): 1212-1222.
[16]  谢崇宝, 白静, 张武雄, 等. 现代化数字灌区建设主体功能及主要应用结构体系探讨[J]. 中国农村水利水电, 2024(4): 141-145+151.
[17]  魏新光, 王铁良, 李波, 等. 辽宁省玉米地水分盈亏时空分布特征及灌溉模式分区研究[J]. 农业工程学报, 2018, 34(23): 119-126.
[18]  Rosenberg, A. and Hirschberg, J. (2007) V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), Prague, June 2007, 410-420.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133