全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深度神经网络在遥感图像分析中的应用研究
Research on the Application of Deep Neural Network in Remote Sensing Image Analysis

DOI: 10.12677/gst.2025.132013, PP. 99-108

Keywords: 遥感影像,深度学习,神经网络,多模态数据融合,模型轻量化,模型的可解释性
Remote Sensing Imagery
, Deep Learning, Neural Networks, Multimodal Data Fusion, Model Lightweight, Model Interpretability

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着遥感技术飞速发展,高分辨率遥感图像已成为环境监测、城市规划、农业管理等多个领域的重要手段。然而遥感图像数据量庞大且复杂,传统分析方法在处理大规模数据时面临计算效率低下和特征提取依赖人工设计等诸多挑战。近年来,深度神经网络(Deep Neural Networks, DNNs),凭借强大的自动特征提取和模式识别能力,在遥感图像分析中展现出卓越的性能。本研究系统地综述了深度神经网络在遥感图像分类、目标检测、语义分割和变化检测等关键任务中的应用,分析了国内外在该领域的研究现状与进展。此外,本研究还探讨了多模态数据融合、模型轻量化与实时性优化、以及深度学习模型的可解释性等前沿研究方向。
With the rapid development of remote sensing technology, high-resolution remote sensing images have become an important means in multiple fields such as environmental monitoring, urban planning, and agricultural management. However, the volume and complexity of remote sensing image data pose significant challenges for traditional analysis methods, including low computational efficiency and the reliance on manual feature design for feature extraction when dealing with large-scale data. In recent years, deep neural networks (DNNs), with their powerful capabilities in automatic feature extraction and pattern recognition, have demonstrated outstanding performance in remote sensing image analysis. This study systematically reviews the application of deep neural networks in key tasks such as remote sensing image classification, object detection, semantic segmentation, and change detection, and analyzes the current research status and progress both domestically and internationally in this field. Additionally, this study also explores cutting-edge research directions such as multi-modal data fusion, model lightweighting and real-time optimization, as well as the interpretability of deep learning models.

References

[1]  王健. 基于深度学习的遥感影像变化检测方法研究[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2023.
[2]  孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5): 479-510.
[3]  李兰, 张建国, 相双, 等. 关于国内深度学习研究的回顾与展望[J]. 宁夏师范学院学报, 2024, 45(11): 72-76.
[4]  单飞龙, 吕鹏远, 李梦晨. 基于CNN-Transformer半监督交叉学习的遥感图像场景分类方法[J]. 宁夏大学学报(自然科学), 2024, 45(3): 325-332.
[5]  吴媛媛, 郝延彪, 刘行, 等. 基于多尺度注意力的光学遥感场景分类[J]. 海军航空大学学报, 2025, 40(1): 171-178, 204.
[6]  王江杰, 王星河. 基于底质分类的浅海海域遥感水深反演[J]. 北京测绘, 2024, 38(8): 1172-1178.
[7]  陶健. 基于空洞卷积与空间注意力的遥感影像小目标检测方法[J]. 测绘与空间地理信息, 2024, 47(10): 104-107+111.
[8]  张立夏, 马致明, 刘战东, 等. 基于改进YOLOv4的遥感目标检测算法[J]. 计算机与数字工程, 2024, 52(10): 2863-2868+2896.
[9]  梁海翔, 唐艳慧, 王宇庆, 等. 高分辨率遥感图像的目标检测[J]. 液晶与显示, 2024, 39(10): 1350-1360.
[10]  Xiang, S., Xie, Q. and Wang, M. (2022) Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network. IEEE Geoscience and Remote Sensing Letters, 19, Article ID: 8006705.
https://doi.org/10.1109/lgrs.2021.3049125
[11]  Ma, Y., Wang, Y., Liu, X. and Wang, H. (2024) SWINT-RESNet: An Improved Remote Sensing Image Segmentation Model Based on Transformer. IEEE Geoscience and Remote Sensing Letters, 21, Article ID: 8003005.
https://doi.org/10.1109/lgrs.2024.3433034
[12]  Qi, Z., Zou, Z., Chen, H. and Shi, Z. (2022) Remote-Sensing Image Segmentation Based on Implicit 3-D Scene Representation. IEEE Geoscience and Remote Sensing Letters, 19, Article ID: 6016205.
https://doi.org/10.1109/lgrs.2022.3227392
[13]  谢国波, 廖文康, 林志毅, 等. 基于MCRASN的遥感影像变化检测[J]. 应用光学, 2024, 45(2): 430.
[14]  刘莺迎, 周刚. 基于孪生Transformer的双时相遥感影像变化检测方法[J]. 遥感信息, 2024, 39(3): 67-74.
[15]  石卫超. 集成CNN和Transformer的高分辨率遥感影像变化检测[D]: [硕士学位论文]. 宜昌: 三峡大学, 2024.
[16]  吴国盼, 王蒙蒙, 李辛莹, 等. 基于三维卷积神经网络的遥感影像变化检测[J]. 遥感信息, 2024, 39(4): 61-67.
[17]  方正楠, 赵春廷, 刘琦, 等. 多模态遥感数据融合中的深度学习技术分析[J]. 电子技术, 2023(7): 49-51.
[18]  郑远驰. 基于多模态融合的遥感图像分割方法研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2024.
[19]  邵仁荣, 刘宇昂, 张伟, 等. 深度学习中知识蒸馏研究综述[J]. 计算机学报, 2022(8): 45.
[20]  方维维, 陈爱方, 孟娜, 程虎威, 王清立. 基于知识蒸馏的目标检测模型增量深度学习方法[J]. 工程科学与技术, 2022, 54(6): 59-66.
[21]  卢绍鹏. 多智能体强化学习算法评测及可解释性研究[D]: [硕士学位论文]. 杭州: 电子科技大学, 2023.
[22]  耿宇, 丁卫平, 黄嘉爽, 等. MGRW-Transformer: 多粒度随机游走可解释性Transformer模型[J/OL]. 电子学报: 1-15.
https://ieeexplore.ieee.org/abstract/document/10313013, 2024-12-11.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133