|
基于12导联心电图的心肌梗死检测与定位研究
|
Abstract:
针对心肌梗死智能诊断中的数据利用不足与特征融合低效问题,本文提出多信息融合网络。该网络的局部特征模块采用时序建模技术捕捉心拍级电生理波动,全局特征模块通过空间注意力机制解析12导联间的解剖关联性,充分挖掘多导联心电信号的诊断价值。引入自适应权重机制动态融合局部与全局特征,有效抑制非特异性噪声并降低冗余维度,增强病理特征的表达区分度。基于共享底层特征与独立任务输出的设计,模型在统一框架下同步实现心梗分类与解剖定位,兼顾共性规律与特异性需求。基于真实临床数据的验证表明,MI-Net在分类与定位任务中表现优异,各性能指标均优于传统方法,其决策逻辑通过特征可视化与心电图诊断标准高度一致,可为临床提供高精度、可解释的智能诊断方案。
To address the challenges of insufficient data utilization and inefficient feature fusion in intelligent myocardial infarction diagnosis, this study proposes a multi-information fusion network. The local feature module employs temporal modeling techniques to capture beat-level electrophysiological fluctuations, while the global feature module leverages spatial attention mechanisms to analyze anatomical correlations across 12-lead ECG signals, thereby fully exploiting the diagnostic value of multi-lead information. An adaptive weighting mechanism dynamically fuses local and global features, effectively suppresses non-specific noise and reduces feature redundancy, enhancing the discriminative representation of pathological characteristics. By integrating shared foundational features with task-specific output layers, the model simultaneously achieves myocardial infarction classification and anatomical localization within a unified framework, balancing shared patterns and clinical task-specific requirements. Validation on real-world clinical datasets demonstrates that MI-Net outperforms conventional methods in both classification and localization tasks. Its decision logic, verified through feature visualization techniques, aligns closely with clinical electrocardiogram diagnostic criteria, providing clinicians with an intelligent diagnostic solution characterized by high precision and interpretability.
[1] | 国家心血管病中心, 中国心血管健康与疾病报告编写组, 胡盛寿. 中国心血管健康与疾病报告2023概要[J]. 中国循环杂志, 2024, 39(7): 625-660. |
[2] | Xu, H., Yang, Y., Wang, C., Yang, J., Li, W., Zhang, X., et al. (2020) Association of Hospital-Level Differences in Care with Outcomes among Patients with Acute ST-Segment Elevation Myocardial Infarction in China. JAMA Network Open, 3, e2021677. https://doi.org/10.1001/jamanetworkopen.2020.21677 |
[3] | Sahu, G. and Ray, K.C. (2022) An Efficient Method for Detection and Localization of Myocardial Infarction. IEEE Transactions on Instrumentation and Measurement, 71, 1-12. https://doi.org/10.1109/tim.2021.3132833 |
[4] | Yang, H., Bukkapatnam, S.T.S., Le, T. and Komanduri, R. (2012) Identification of Myocardial Infarction (MI) Using Spatio-Temporal Heart Dynamics. Medical Engineering & Physics, 34, 485-497. https://doi.org/10.1016/j.medengphy.2011.08.009 |
[5] | Darmawahyuni, A., Nurmaini, S., Sukemi, Caesarendra, W., Bhayyu, V., Rachmatullah, M.N., et al. (2019) Deep Learning with a Recurrent Network Structure in the Sequence Modeling of Imbalanced Data for ECG-Rhythm Classifier. Algorithms, 12, Article 118. https://doi.org/10.3390/a12060118 |
[6] | Yu, J., Gao, J., Wang, N., Feng, P., Zhou, B. and Wang, Z. (2023) Spa-Tem MI: A Spatial-Temporal Network for Detecting and Locating Myocardial Infarction. IEEE Transactions on Instrumentation and Measurement, 72, 1-12. https://doi.org/10.1109/tim.2023.3301047 |
[7] | Qiang, Y., Dong, X. and Yang, Y. (2024) Automatic Detection and Localisation of Myocardial Infarction Using Multi-Channel Dense Attention Neural Network. Biomedical Signal Processing and Control, 89, Article 105766. https://doi.org/10.1016/j.bspc.2023.105766 |
[8] | Yao, Q., Zhang, L., Zheng, W., Zhou, Y. and Xiao, Y. (2023) Multi-Scale SE-Residual Network with Transformer Encoder for Myocardial Infarction Classification. Applied Soft Computing, 149, Article 110919. https://doi.org/10.1016/j.asoc.2023.110919 |
[9] | Chatterjee, S., Thakur, R.S., Yadav, R.N., Gupta, L. and Raghuvanshi, D.K. (2020) Review of Noise Removal Techniques in ECG Signals. IET Signal Processing, 14, 569-590. https://doi.org/10.1049/iet-spr.2020.0104 |
[10] | Sörnmo, L. and Laguna, P. (2005) ECG Signal Processing. In: Sörnmo, L. and Laguna, P., Eds., Bioelectrical Signal Processing in Cardiac and Neurological Applications, Elsevier, 453-566. https://doi.org/10.1016/b978-012437552-9/50007-6 |
[11] | Prakash, M.B., Sowmya, V., Gopalakrishnan, E.A. and Soman, K.P. (2021) Noise Reduction of ECG Using Chebyshev Filter and Classification Using Machine Learning Algorithms. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, 19-20 February 2021, 434-441. https://doi.org/10.1109/icccis51004.2021.9397163 |
[12] | Benitez, D., Gaydecki, P.A., Zaidi, A. and Fitzpatrick, A.P. (2001) The Use of the Hilbert Transform in ECG Signal Analysis. Computers in Biology and Medicine, 31, 399-406. https://doi.org/10.1016/s0010-4825(01)00009-9 |
[13] | He, K., Zhang, X., Ren, S., and Sun, J. (2016) Identity Mappings in Deep Residual Networks. Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, 11-14 October 2016, 630-645. |
[14] | Lakhdari, K. and Saeed, N. (2022) A New Vision of a Simple 1D Convolutional Neural Networks (1D-CNN) with Leaky-ReLU Function for ECG Abnormalities Classification. Intelligence-Based Medicine, 6, Article 100080. https://doi.org/10.1016/j.ibmed.2022.100080 |
[15] | Vaswani, A. (2017) Attention Is All You Need. Advances in Neural Information Processing Systems. https://doi.org/10.48550/arXiv.1706.03762 |