|
基于改进麻雀算法的机械臂轨迹优化
|
Abstract:
机械臂轨迹优化是机器人运动控制领域的核心研究问题,旨在生成满足运动学与动力学约束的最优轨迹,以提高运动效率、稳定性及能耗控制能力。本文针对标准麻雀搜索算法在优化精度及局部搜索能力方面的不足,提出了一种基于改进麻雀搜索算法的机械臂轨迹优化方法。该方法结合3-5-3分段多项式插值,以时间最优为优化目标,在满足关节速度、加速度及冲击量等约束的前提下,通过引入动态权重调整策略和蝴蝶算法,增强搜索能力并提高解的质量。实验基于UR5机械臂进行仿真分析,并与标准麻雀算法及粒子群优化算法进行对比。结果表明,改进麻雀搜索算法在收敛速度、全局搜索能力及优化精度方面均优于其他方法,使轨迹规划总耗时较PSO减少15.67%,较SSA减少9.94%。该方法有效提升了机械臂运动的平稳性与执行效率,为机械臂运行复杂任务提供了一种高效的轨迹优化方案。
The trajectory optimization of robot arm is the core research problem in the field of robot motion control, aiming at generating the optimal trajectory satisfying the kinematic and dynamic constraints to improve the motion efficiency, stability and energy consumption control ability. Aiming at the shortcomings of the standard sparrow search algorithm in optimization accuracy and local search ability, this paper proposes a robotic arm trajectory optimization method based on the improved sparrow search algorithm. This method combines 3-5-3 piecewise polynomial interpolation, takes the time optimization as the optimization goal, meets the constraints of joint velocity, acceleration and impact, and introduces dynamic weight adjustment strategy and butterfly algorithm to enhance the search ability and improve the quality of the solution. Simulation analysis was carried out based on UR5 robot arm, and comparison was made with standard Sparrow algorithm and particle swarm optimization algorithm. The results show that the improved sparrow search algorithm is superior to other methods in terms of convergence speed, global search ability and optimization accuracy, and the total trajectory planning time is reduced by 15.67% compared with PSO and 9.94% compared with SSA. This method effectively improves the smoothness and execution efficiency of the manipulator, and provides an efficient trajectory optimization scheme for the manipulator to run complex tasks.
[1] | 冯建超, 鲁文其, 林军华, 等. 基于3-5-3多项式插补的六轴机器人轨迹优化[J]. 机械与电子, 2023, 41(10): 75-80. |
[2] | 王磊, 崔嵩, 牛婷婷. 复杂环境下多策略改进麻雀搜索的定位算法[J]. 小型微型计算机系统, 2024, 45(11): 2768-2776. |
[3] | 仝浩源, 马立东, 孟志娟, 等. 管棒材拆捆机器人系统与轨迹规划研究[J]. 组合机床与自动化加工技术, 2021(7): 40-43, 48. |
[4] | Mohammed, A., Schmidt, B., Wang, L. and Gao, L. (2014) Minimizing Energy Consumption for Robot Arm Movement. Procedia CIRP, 25, 400-405. https://doi.org/10.1016/j.procir.2014.10.055 |
[5] | 胡智宇. 基于冲击最优的弧焊机器人轨迹规划研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2019. |
[6] | Pu, Q., Xu, X., Li, Q. and Zhang, H. (2024) Robotic Arm Time-Jerk Optimal Trajectory Based on Improved Dingo Optimization. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46, Article No. 198. https://doi.org/10.1007/s40430-024-04694-4 |
[7] | Wu, G. and Zhang, N. (2023) Kinematically Constrained Jerk-Continuous S-Curve Trajectory Planning in Joint Space for Industrial Robots. Electronics, 12, Article 1135. https://doi.org/10.3390/electronics12051135 |
[8] | 马振书, 张云峰, 孙华刚, 等. 排爆机械臂多目标轨迹规划研究[J]. 振动与冲击, 2016, 35(2): 116-123 |
[9] | 牛明建. 基于多目标优化的串联机械臂轨迹规划方法研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2023. |
[10] | Hua, Y.X. (2021) Review of Trajectory Planning for Industrial Robots. Journal of Physics: Conference Series, 1906, Article ID: 012041. https://doi.org/10.1088/1742-6596/1906/1/012041 |
[11] | 周力, 何荣誉, 李浩, 等. 基于改进DE算法的机械臂轨迹规划的设计[J]. 自动化技术与应用, 2024, 43(9): 12-15, 41. |
[12] | 崔靖凯, 王凯, 范正奇, 等. 基于改进灰狼算法的冗余机械臂最优轨迹规划[J/OL]. 控制与决策: 1-10. https://doi.org/10.13195/j.kzyjc.2024.1072, 2025-03-12. |
[13] | 张铁, 廖才磊, 邹焱飚, 等. 采用强化学习的多轴运动系统时间最优轨迹优化[J]. 西安交通大学学报, 2021, 55(7): 33-40. |
[14] | 许艳涛, 邹光明, 王众玄, 等. 基于改进麻雀算法机械臂时间最优轨迹规划[J]. 组合机床与自动化加工技术, 2024(9): 86-90, 97. |
[15] | 周明月, 周明伟, 刘桂岐, 等. 基于改进蝴蝶算法的机械臂时间最优轨迹规划[J]. 计算机科学, 2023, 50(S2): 119-126. |
[16] | Li, Q., Wu, W., Xiang, J., Li, H. and Wu, C. (2014) A Hybrid Robot for Friction Stir Welding. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229, 2639-2650. https://doi.org/10.1177/0954406214562848 |